Photo © Eric W. Valentine ## **Conservation Summaries for Strategy Species** These tables summarize the ecoregions, special needs, limiting factors, data gaps, and key conservation actions for Strategy Species. Marine species, including marine mammals, will be addressed in the Oregon Nearshore Strategy. **Ecoregions:** Strategy Species were designated by ecoregion, based on conservation need and opportunities, rather than on a statewide basis. The ecoregions listed in the table below represent the highest priorities for implementing conservation actions for individual species. However, some species also occur in ecoregions other than the ones listed in the table. Appropriate conservation actions implemented outside the listed ecoregion(s) will also contribute to the overall conservation for that species. #### Key to ecoregion abbreviations: BM = Blue Mountains CP = Columbia Plateau CR = Coast Range EC = East Cascades KM = Klamath Mountains NBR = Northern Basin and Range WC = West Cascades WV = Willamette Valley **Special needs:** These are the types of habitat or habitat elements that are important to the species sometime during its lifecycle. Needs may include requirements for foraging, raising young, migrating or wintering. For plants, they may also include soil, elevation or other factors that determine where a species occurs. **Limiting factors:** These describe some of the issues that affect species and may limit or otherwise impact their populations. Limiting fac- tors are often associated with changes in habitat quality or quantity, but also include disease, competition or other impacts from non-native species, disturbance during sensitive times, barriers to movement and other factors. For this Conservation Strategy, limiting factors also includes factors that make a species more vulnerable to change and/or slow to recover from population declines. For example, some species occur at naturally low densities, have very specific habitat requirements, have naturally low reproductive rates, occur in a small geographic area (endemic), or move across very large areas. Data gaps: These are research or monitoring questions that need to be answered to better conserve a species. They may include basic life history requirements, habitat associations, or impacts from potential limiting factors. Data gaps that apply to all species or broad groups of species are presented on page 367. For example, data on baseline conservation status, estimated population size and population trends are needed for most Strategy Species. Key conservation actions: These are priority actions recommended to conserve the species. Management actions should ideally address a species special needs and limiting factors. For some species some actions have already been implemented and should be continued. For other species, new conservation actions are identified. Conservation actions need to be compatible with local priorities, local comprehensive plans and land use ordinances, as well as other local, state, or federal laws. Actions on federal lands must undergo federal planning processes prior to implementation to ensure consistency with existing plans and management objectives for the area. Conservation Summaries for Strategy Species – Mammals (18 species): | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|---|--|--|--|--| | American marten
(<i>Martes Americana</i>) | BM
CR
EC
WC | Often associated with late-
successional mixed conifer
habitats with multi-layer stands,
but can use a variety of conifer
forests as long as a high density
of snags and logs are available
for den sites and foraging | Low survival rates in fragmented forests | Estimated population densities;
differences in habitat
requirements by ecoregion and
forest type; basic ecology well-
understood in Blue Mountains
but less so in other ecoregions | Minimize fragmentation in core
habitat areas; provide travel
corridors between habitat blocks;
maintain and create snags;
maintain downed wood | | California myotis (bat)
(Myotis californicus) | BM WC
CR WV
EC
KM
NBR | Primarily forest-associated; uses large snags for day roosts; occasionally found night roosting under bridges | Reduction of large snags; patchy
distribution; appears to have low
populations | Seasonal movements, winter roost locations and their micro-climate conditions; distribution and trends; species distinction in relation to western small-footed bat | Maintain and create large snags
during forest management
activities; complete bridge
replacement and maintenance
when bats are absent | | Columbian white-tailed deer (Odocoileus virginianus leucurus) | CR (Columbia
River Distinct
Population
Segment [DPS])
KM (Umpqua
population) | Columbia River DPS - Riparian habitat along the lower Columbia River. Umpqua population - Lower elevation oak woodland forests. Often found in riparian habitat. | to a few small separate populations. Habitat loss due to agricultural and residential development. Flooding impacts on island-dwelling and lowelevation mainland populations. Umpqua population - Disease. Collisions with vehicles. Habitat loss due to development. | Columbia River DPS - Predator-
prey interactions with coyotes.
Agricultural land use impacts on
habitat. Both populations -
Susceptibility to disease (e.g.,
Deer Hair Loss). | Columbia River DPS - Continue to implement Conservation actions identified in the Columbian whitetailed deer Recovery Plan. Umpqua population - Continue to monitor populations. Continue to manage habitat at North Bank Habitat Management Area. Evaluate transplant issues and priorities. | | Fisher
(Martes pennanti) | KM
WC | Found in mature, closed canopy forests, often along riparian corridors. Uses hollow logs or brush piles for den sites. Preys on small mammals, including porcupines. | Large home range required. Low
rate of reproduction. Specific
habitat requirements for dens. | Are populations expanding and/or reestablishing in extirpated areas? Feasibility studies on re-introduction, if not expanding. | Maintain late successional habitats within the fishers range; improve habitat patch size and connectivity to provide for dispersal, genetic interchange, and expansion of populations. Use results of feasibility studies to guide specific conservation actions and management decisions for reintroductions. | | Fringed myotis (bat)
(Myotis thysanodes) | BM
CR
EC
KM
WC | Forest habitats; large snags and rock features for day, night, and maternity roosts (occasionally uses bridges for night roosting); caves and mines for hibernacula; beetles for prey. | Disturbance at roosts; patchy
distribution and rarity; reduction
of large snags | Seasonal movements; maternity
& winter roost locations and
characteristics; extent and effects
of other limiting factors (e.g.,
habitat loss and degradation);
distribution and trend | Use gates and seasonal closures to protect known hibernacula; maintain and create large-diameter hollow trees and large diameter, tall, newly dead snags during forest management activities | | Hoary bat
(Lasiurus cinereus) | BM NBR
CR WC
EC
KM | Forest habitats, including late successional conifer forests which are used for roosting | Habitats loss; migratory behavior increases vulnerability to habitat changes and mortality | Basic ecology, distribution,
migration patterns, habitat use,
impacts of wind facilities on
migratory populations | Investigate data gaps and use results to guide management actions | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|-----------------------------------|---|---|---
--| | Kit fox
(Vulpes macrotis) | NBR | Salt desert scrub | Small population at northern end of range, naturally limited by habitat, may be locally impacted by predation by coyotes and by collisions with vehicles | Population densities, current species status | This species is difficult to census; a cost-effective method is needed to determine population size and trends | | Long-legged myotis
(bat)
(<i>Myotis volans</i>) | BM
CR
EC
KM
NBR
WC | Often associated with late successional conifer forests or other forested habitat with late successional components (especially snags); uses large snags and hollow trees primarily in riparian areas for day, night, and maternity roosts; may use bridges in forested habitat for night roosting; occasionally found night roosting and hibernating in caves or mines; forages in forest riparian and forest edge | Reduction of late successional conifer forests in some ecoregions; loss of hollow trees and large diameter, tall, newly dead snags; loss of healthy riparian habitat; untimely bridge replacement | Seasonal movements, winter roost locations and their microclimate conditions; baseline population data; trends | Maintain and create large-diameter hollow trees and large diameter, tall, newly dead snags in riparian and upland habitat; maintain and restore diverse riparian areas; complete bridge replacement and maintenance when bats are absent | | Pallid bat
(Antrozous pallidus) | BM
CP
EC
KM
NBR | Dry, open habitats; crevices in cliffs, caves, mines, or bridges (occasionally uses buildings) for day, night, or maternity roosts, or hibernacula; grassland, shrubsteppe and dry forest ecotones for foraging; open water sites within the landscape; snags as day roosts in some areas | Disturbance at roosts;
patchy distribution; loss of pine
snags; loss of native grassland,
shrub-steppe habitats and open
ponderosa pine woodlands | Maternity & winter roost locations and microclimate requirements, seasonal movements, statewide distribution and trends | Use gates and seasonal closures to protect known roost sites during sensitive times (raising young and hibernation). Maintain open water sources in dry landscapes. Manage rock features such as cliffs to avoid conflict with recreational use and rock removal. Complete bridge replacement and maintenance when bats are absent. Maintain large pine snags in shrubsteppe/forest ecotones. Maintain and restore native grassland, shrubsteppe and open ponderosa pine habitats. | #### Fisher Fishers are medium-sized predators and are related to otters, weasels, and minks. Historically, the fisher occurred in forested habitats throughout western Oregon, Washington and northern California. By 1940, Oregon's fisher populations were either greatly reduced or eliminated from many areas due to non-regulated trapping, accidental poisoning, and habitat loss. Fishers feed on porcupines, snowshoe hares, chipmunks and squirrels. The common name "fisher" is a misnomer because fishers do not eat fish at all. The origin of the name is not known, but may be due to confusion with the closely-related mink, which does eat fish. Fishers are an important predator of porcupines, killing by biting the porcupine's face while avoiding the sharp quills. Because of this hunting ability, fishers were reintroduced into Douglas County in the late 1970's and early 1980's. Foresters and biologists hoped that the fishers would reduce porcupine populations and the damage that porcupines cause to trees. Fishers currently occur in two small distinct populations in southwest Oregon. They favor late successional forests below 4,000 feet. From 1995 to 2002, a cooperative research project was conducted by the USFS Pacific Northwest Research Station. The study examined the fisher's genetics, food habitats, and habitat use, including natal and maternal den sites, rest sites, and effects of stand and landscape composition on habitat use and home range size. The study has provided management recommendations to maintain and restore Oregon's fisher populations. | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|----------------------------|---|--|--|--| | Pygmy rabbit
(Brachylagus idahoensis) | NBR | Tall dense clumps of basin big
sagebrush; deep, loose soils for
digging burrows; native grasses
for summer forage | Habitat loss; patchy distribution
and susceptible to local declines;
limited dispersal capabilities;
dispersal impacted by roads and
cleared areas | Distribution and abundance; population dynamics | Maintain basin big sagebrush
habitats; provide habitat corridors
between priority populations | | Red tree vole
(Arborimus longicaudus) | CR
KM
WC | Found in dense, moist conifer forests; prefers large stand size; highly specialized diet of primarily Douglas-fir needles; requires large branches for protection of nests, which are typically at least 50 feet above ground | Very small home range. Poor
dispersal ability. Low
reproductive rate. | Reproductive success in young forests. Stand requirements for population maintenance (e.g., minimum number or size of conifer trees, connectivity). Population genetics. Home range, dipersal and migration. Clarification of subspecies status. | Continue to monitor populations in response to forest management activities. Note: a major food item for northern spotted owl | | Ringtail
(Bassariscus astutus) | KM
WC | Large-diameter snags and logs
for dens. Associated with late
successional forests but also uses
riparian and rocky areas. | Habitat loss and fragmentation
(rarely uses remnant snags in
timber harvest units). | Survey techniques to detect this secretive, nocturnal species | Maintain late successional reserves;
maintain large-diameter snags and
logs when conducting thinning;
create snags when management
activities reduce snag availability
across landscape | | Silver-haired bat
(<i>Lasionycteris</i>
noctivagans) | BM
CR
EC
KM
WC | Late-successional conifer forests;
uses large snags and hollow
trees for day, night, and
maternity roosts; found in other
habitats during migration | Reduction of late successional conifer forests; loss of hollow trees and large diameter, tall, newly dead snags; migratory behavior increases vulnerability to habitat changes and mortality | Distribution, migration patterns,
habitat use, impacts of wind
facilities on migratory
populations | Maintain late successional conifer habitats; maintain and create large-diameter hollow trees and large diameter, tall, newly dead snags during forest management activities | | Spotted bat
(Euderma maculatum) | BM
NBR | Crevices in cliffs, caves, and canyon walls for day & night roosting; trees adjacent to meadows for night roosting; water source within landscape; meadows and shrub-steppe for foraging | Naturally rare; disturbance at
roosts; loss of natural shrub-
steppe habitat | Distribution within Oregon
(baseline data needed); basic
ecology; habitat relations;
estimated population size and
trend | Maintain open water sources in
desert landscapes. Manage rock
features such as cliffs to avoid
conflict with recreational use and
rock removal. Maintain and restore
native shrub-steppe habitat | | Townsend's big-eared
bat
(Corynorhinus
townsendii) | BM WC CP WV CR EC KM NBR | Caves, mines, & isolated buildings for day, night, or maternity roosts, or hibernacula; occasionally uses hollow trees and bridges for day or night roosting; primarily feeds on moths | Highly sensitive to disturbance at
roosts; highly specific roost
requirements; reduction in prey
base including from non-target
pesticides (e.g., btk) used for
controlling Lepidoptera | Winter roost locations; seasonal
movements;
effects of gypsy moth and other
insect control on prey base | Use gates and seasonal closures to protect known roost sites during sensitive times (raising young and hibernation). Maintain buildings used as roosts. Maintain and create large-diameter hollow trees during forest management activities. Monitor roosts. | | Washington ground
squirrel
(Spermophilus
washingtoni) | СР | Shrub-steppe or grassland with
deep, loose, sandy loam soils;
high availability of forbs; patch
size large enough to maintain a
colony | Habitat loss and fragmentation | Colony site dynamics (landscape/metapopulation dynamics) to
understand how and why colony sites appear and disappear; genetic variability across range (including similarities to Washington populations); soil requirements | Maintain habitat patches; restore habitat connectivity where possible | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|---|---|---|---| | Western grey squirrel
(Sciurus griseus) | WV | Oak woodland and savanna;
mixed oak-pine-fir woodlands;
older trees with large limbs;
continuous canopy for
movements | Habitat loss and fragmentation;
vegetation changes due to fire
suppression;
residential and urban
development | Population locations and trends; general ecology; competition and other impacts from nonnative squirrels; dispersal patterns and need for canopy travel corridors | Work with private landowners to maintain and restore oak and mixed oak/pine/fir woodlands, especially large patches; maintain continuous canopy within 200 feet of nest sites; maintain or plant mast species such as Oregon white oak and California hazel; maintain older trees with large limbs. | | White-tailed jackrabbit
(Lepus townsendii) | NBR | Bunchgrass grasslands | Distribution naturally limited by habitat; habitat loss and degradation (shrub encroachment) | Basic ecology; habitat
relationships; distribution;
population trends | Investigate species-specific habitat requirements and use these to guide management actions; develop methods to census (nocturnal species) | #### Rails As spring melds into summer and day melds into night, Eastern Oregon marshes present an ever-changing proces- sion of sounds: Pacific treefrogs croak a squeaky chorus; Wilson's snipe perform spiral display flights with whistling wings; common nighthawks end diving flights with a "boom;" and rails reveal their grassy hiding places by clicks, clucks or grunts. Oregon's wetlands are home to three species of rails, all of which are extremely secretive. Stubby tails, short round wings, and a narrow body allow rails to move quietly through marsh vegetation. They generally stay close to hiding cover as they hunt for invertebrates and other foods. Because rails are secretive and most active at dusk and dawn, they are best identified by their breeding calls. The Virginia rail's breeding call is a repeated "ki-dic ki-dic;" the sora's call sound like "ker-wee" or "kooEE;" and the yellow rail's "tic-tic tic-tic-tic" is reminiscent of tapping two pebbles together. Both Virginia rails and sora are common in freshwater and brackish marshes throughout Oregon, but the yellow rail is one of the state's rarest breeding birds. Yellow rails breed in shallow freshwater wetlands, particularly in flooded sedge meadows. In Oregon, they have a narrow distribution within Klamath and Lake Counties and occur in suitable habitats at 4,100 – 5,000 feet in elevation. They primarily build their nests under domes of the previous year's plant growth, called senescent vegetation. The total Oregon population is estimated to be less than 300 birds, which may represent 50 percent of the entire western United States breeding population. Yellow rail populations have been impacted by wetland loss and degradation. They can be sensitive to habitat changes such as drying due to a lowered water table, too much flooding, or loss of senescent vegetation. They will colonize restored wetlands, so wetland conservation and restoration will ensure that some of Oregon's marshes still "tic" with the call of the yellow rail. 324 #### Ecoregion(s) Special needs **Limiting factors Conservation actions Species** Data gaps Conservation Summaries for Strategy Species Acorn woodpecker WV Oak woodlands with a high Loss of oak woodlands in Willa-Nesting ecology, especially nest Work with private landowners to (Melanerpes formicivorus) canopy and relatively open mette Valley. Small, localized site requirements maintain and restore oak understory: dead limbs or snags woodlands with open populations. Competition for for storing acorns understories, especially large nesting cavities from European patches; maintain snags and starlings. Colonial. older trees with dead limbs Aleutian Canada goose CR In Oregon: coastal grass-This species declined historically Estimated population size; Aleutian Canada Goose Recovery (Branta canadensis dominated fields/pastures for due to non-native predators specific migration route; use Plan provides information on foraging and offshore islands for (foxes) in breeding areas of leucopariea; Semidi Island areas in the Lower Columbia conservation strategies. Use population only) roostina Alaska. Semidi Island breeding River incentives and cooperative population has still not fully approaches to manage foraging habitat on private land. recovered. [Notes: AOU name is Aleutian Currently in Oregon, there is a cackling goose, Branta hutchinsii small migrant and wintering *leucopareia*. This species was population. Currently, foraging removed from the federal sites are limited and occur on threatened list in 2001 and private land. removed from the Oregon state endangered species list in 2005. Although the primary limiting factors occur outside of Oregon, providing wintering habitat can contribute to this species' conservation.] American bald eagle CR Continue to monitor eagle Associated with large water Poor reproduction in the lower Sources of contaminants and productivity and contaminant (Haliaeetus bodies (rivers, lakes, ocean) Columbia estuary which has been methods to reduce/mitigate for Τ which support fish populations linked to contaminants: loss of contaminant levels (e.g., do levels present in fish in the Lower leucocephalus) Birds (62 and have large trees for nesting organocloride pesticide residues Columbia; maintain large trees large nesting trees nearby; variable habitat for remain in bottom sediments?); near suitable feeding habitat. wintering based on food impacts of bald eagles on availability breeding seabird and great blue heron colonies where eagle species): populations are increasing Relationship between wintering CR Rock cliffs for nest sites; uses Eggshell thinning caused by American The federal monitoring plan peregrine falcon NBR offshore rocks and islands in organochlorine pesticides (e.g., locations of Oregon breeders and provides information on manage-Coast Range ecoregion residual DDT in Oregon's contaminant levels (Falco ment and conservation actions for environment and possibly peregrinus this formerly listed federal species. concentrated by prey wintering in anatum) Note: Although the American Central and South America). peregrine falcon has been down-Human disturbance at nests. listed from the federal endangered Reductions of prey populations species list, it has not met recovery goals in southeast Oregon. | - | | | | | | |--|--------------|---|--|---|--| | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | | American three-toed
woodpecker
(Picoides dorsalis) | BM
EC | Found in forested habitats usually above 5,000 ft.; dead trees with heartrot for nesting and high densities of wood-boring beetles for foraging; often associated with large-scale forest disturbances that produce a high density of snags (e.g., forest fires, disease pockets and bark beetle outbreaks) | Small, often disjunct
populations. Specific habitat
requirements. Reductions in snag
availability due to fire
suppression and forest health
management | Estimated population size and trends. Habitat relationships. Nesting ecology. | Maintain areas of high snag
density especially above 5,000
feet where compatible with other
forest objectives (e.g., maintain
bark beetle infested trees in areas
of low risk of insect infestation
into adjacent forests) | | American white pelican (Pelecanus erythrorhynchos) | NBR | Isolated and sparsely vegetated
terrestrial nesting habitat
associated with lakes and
freshwater marshes; shallow
water areas for cooperative
feeding | Specialized nesting and foraging habitat subject to droughts, floods, and manipulated water levels; sensitive to human disturbance and mammalian predators at nest sites; colonial nester; small, disjunct
populations | Identification of landscape-level
breeding and post-breeding
habitat needs for responding to
annual site-specific changes in
water levels | Minimize human disturbance in nesting areas during breeding season and in shallow feeding areas. Where appropriate, manage water levels to provide suitable foraging and nesting habitat. | | Band-tailed pigeon
(Patagioenas fasciata) | CR
WC | Mineral sites; large conifer forest landscape with a variety of forest stand age and structure | Reductions in quality and quantity of mineral sites. Large area requirements. Disease. | Opportunities to enhance/create mineral sites. Distribution of nesting sites. Habitat needs. Reasons for declining trends. | Maintain existing mineral sites. Maintain, plant or otherwise manage for elderberry, cascara and other food plants | | Barrow's goldeneye
(Bucephala islandica) | EC
WC | High-elevation lake or pond
habitat with abundant
invertebrate prey and surrounded
by forests; snags or live trees with
cavities for nest sites nearby;
loafing sites (logs and rocks) | Relatively small breeding populations; at southern end of ranges; narrow habitat requirements (suitable snags in conjunction with suitable water bodies) | Water body characteristics suitable for nesting; impact of human recreation on nesting; variables associated with nest box use and effectiveness of nestboxes as a conservation measure | Maintain and/or create snags
close to mountain lakes. Nest
boxes can be used as a short-
term strategy to establish and/or
expand populations | # Lewis' Woodpecker Oregon is home to an interesting variety of woodpeckers, 12 species in all. Named for the famous explorer, Lewis' woodpecker is one of the more unusual of Oregon's woodpeckers. Lewis' woodpecker is striking in appearance, with an iridescent greenish-black back, gray collar and breast, rosy belly, and crimson face. Its diet varies throughout the year. In the spring, Lewis' woodpeckers feed upon insects, especially carpenter ants, bees, wasps, mayflies, beetles, and grasshoppers. Unlike most of Oregon's woodpeckers, Lewis' woodpecker does not hunt insects by drilling holes into wood or flaking off bark. Instead, they often sit on branches, snags, fence posts or telephone posts and fly out to catch insects. They also perform acrobatic maneuvers when hunting in the midst of an insect swarm. In the fall, they feed on fruits such as elderberry, currant, serviceberry, poison oak, and ash. They store acorns for their winter food by shelling and breaking the nuts and then caching the pieces in wood cracks and bark crevices. Like all woodpeckers, Lewis' woodpeckers nest inside tree cavities. However, unlike most woodpeckers, Lewis' woodpeckers generally do not excavate their own nest holes. Instead, they use old cavities created by northern flickers and hairy woodpeckers. Open oak, ponderosa pine, and riparian cottonwood woodlands provide Lewis' woodpeckers with the combination of tree cavities and diverse food sources they need during the spring and summer. They usually spend the winter in oak habitats and often move around in response to acorn crops. Lewis' woodpeckers were once widespread and abundant in Oregon, but have declined dramatically since the 1950's. The decline is thought to be due to loss of all three woodland types, and in particular loss of large-diameter nest and food storage trees; competition for nest cavities from introduced starlings; and a reduction in insect populations. The oak woodlands east of Mount Hood provide some of the state's last major nesting areas for Lewis' woodpecker. They also are easily viewed on ODFW's White River Wildlife Management Area. By maintaining and restoring open oak, ponderosa pine, and riparian cottonwood habitats and by managing snags, Oregonians can help bring back this colorful woodpecker. | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--------------|--|---|---|---| | Black brant
(Branta bernicla nigricans) | CR | Eelgrass and sea lettuce beds for
foraging in areas with limited
human disturbance | Small wintering population that
has been declining. Loss and
degradation of eelgrass beds.
Human disturbance activities in
preferred foraging areas. | Effects of habitat quality at spring
staging sites on reproductive
fitness and success; historic and
current abundance of submerged
aquatic vegetation in Oregon's
primary estuaries | Maintain existing eelgrass beds from degradation and human disturbance. Restore eelgrass beds to enhance quality and quantity; work with partners in Pacific Flyway Council to manage sport harvest timing and/or levels to minimize impacts to wintering populations | | Black oystercatcher
(Haematopus bachmani) | CR | Rocky coastal habitats with
sufficient intertidal invertebrate
prey | Small breeding/wintering
population. High vulnerability to
potential oil spills. Increased
human activity and development
near nesting sites | Impact of human disturbance on
nesting and foraging; wintering
ecology | Identify high priority sites. | | Black swift
(Cypseloides niger) | WC | Waterfalls with open access,
limited light, and crevices/ledges
for nest sites | Small and disjunct populations in
discrete and unique nesting
habitat | If waterfall nest sites (crevices
and ledges) limit populations;
survey potential sites to
determine nesting sites | Maintain low disturbance at nesting waterfalls | | Black-backed
woodpecker
(<i>Picoides arcticus</i>) | BM
EC | Found in forested habitats usually above 5,000 ft; needs dead trees with heartrot for nesting and high densities of wood-boring beetles for foraging; often associated with large-scale forest disturbances that produce a high density of snags (e.g., forest fires, disease pockets and bark beetle outbreaks) | Small, often disjunct
populations. Specific habitat
requirements. Reductions in snag
availability due to fire
suppression and forest health
management | Estimated population size and trends. Habitat relationships. Nesting ecology. | Maintain areas of high snag density in wildfire and other disturbance areas, especially above 5,000 feet, where compatible with other forest objectives (e.g., maintain bark beetle infested trees in areas of low risk of insect infestation into adjacent forests) | | Black-necked stilt
(Himantopus mexicanus) | NBR | Alkaline or freshwater ponds
with extensive shallow water
areas for foraging | Specialized nesting habitat at
edge of water; nesting habitat is
subject to droughts and floods;
moves in response to water
levels; colonial nester | Identification of landscape-level
breeding and post-breeding
habitat needs for responding to
annual site-specific changes in
water levels | Maintain suitable nesting and foraging areas across the landscape to provide habitat regardless of annual variation in precipitation and water levels | | Blue-gray gnatcatcher
(Polioptila caerulea) | KM | Scattered oak trees within a brushy chaparral community | Small population. Common
cowbird host. Loss of chaparral
habitat for fire hazard control | Complete population inventory.
Impacts of cowbird parasitism.
Impacts of fragmentation of
habitat | Work with private landowners to
maintain or restore low-elevation
chaparral habitat, especially
larger patches | | Bobolink
(Dolichonyx oryzivorus) | BM
NBR | Broad leaf forbs (e.g., clover,
alfalfa, false lupine, potentilla) for
nesting cover and insect
resources | Population declines; small scattered, colonial populations, many on private land; sensitivity to water and some agricultural practices | Annual population monitoring; possible impact of cowbird parasitism and corvid predation on small populations | Partnerships with private landowners to manage habitat: remove residual vegetation and stimulate new growth prior to breeding season; seasonally flooded meadows (prior to breeding season); delay field maintenance (e.g., mowing, haying) until after the breeding season | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--------------|---|--|---
--| | Brewer's sparrow
(Spizella breweri) | CP | Sagebrush shrubland with canopy height less than 5 ft. Often associated with big sagebrush; also utilizes a variety of shrub habitats. Nest in thick crowns or low in brush, or in clumps of grass. | Reduction and fragmentation of suitable nesting habitat. Cheatgrass invasion. | Taxonomy. Distribution of subspecies in Oregon. | Maintain suitable shrub habitats
for breeding. Maintain
connectivity among habitat
patches. | | Bufflehead
(Bucephala albeola) | EC
WC | High-elevation lake or pond
habitat with abundant
invertebrate prey and surrounded
by forests; snags or live trees with
cavities for nest sites nearby;
loafing sites (logs and rocks) | Relatively small breeding
populations; at southern end of
ranges; narrow habitat
requirements (suitable snags in
conjunction with suitable water
bodies) | Water body characteristics suitable for nesting; impact of human recreation on nesting; variables associated with nest box use and effectiveness of nestboxes as a conservation measure | Maintain and/or create snags
close to mountain lakes. Nest
boxes can be used as a short-
term strategy to establish and/or
expand populations | | California brown pelican
(Pelecanus occidentalis
californicus) | CR | Near-shore pelagic habitat for
foraging; offshore rocks and
islands, inaccessible headland
areas, sandy islands, and sand
spits for roosting | Forage fish availability; high potential vulnerability to oil spills | Diet; roosting ecology; effects of human disturbance | Maintain suitable conditions at known roosting sites | | Caspian tern
(Sterna caspia) | CR | Unvegetated nesting islands free of mammalian predators | Requires long-term availability of
suitable nesting sites. Colonial-
nesting so vulnerable to random,
human-induced or natural events | Predation levels on various groups of salmonids | The USFWS Status Assessment
and Conservation
Recommendations Plan provides
information on appropriate
conservation actions for this non-
listed species | | Chipping sparrow
(Spizella passerine) | WV | Open areas of herbaceous
understory for foraging in
understory of oak woodlands | Declining populations; loss and degradation of oak woodland habitats due to development, loss of natural fire regimes and invasive encroachment in understory; possibly cowbird parasitism | Effects of cowbird parasitism on
productivity; effects of feral cats
in residential nesting areas, and
agricultural management in
agricultural areas (e.g., orchards) | Maintain areas of open
herbaceous understory in oak
woodlands; control key invasive
plants | ## **Upland Sandpiper** The upland sandpiper is a medium-sized shorebird with long legs and a short bill. One of Oregon's rarest breeding birds, they occur in Oregon as a small, disjunct population, separate from the main populations east of the Rocky Mountains. They are very secretive except during the breeding season when they perform theatrical courtship flights over their nesting areas in high-elevation meadows. Their breeding meadows vary in size and type, but are often surrounded by lodgepole or ponderosa pine forests, are near a stream, and have wildflowers and other forbs. Uncontrolled shooting in the late 1800's and habitat loss led to historic population declines. Currently, conifer encroachment into meadows, the use of herbicides to control forbs, and overgrazing of some meadows in spring and summer may be affecting their populations. Upland sandpipers are no longer thought to occur in Washington, and Oregon's populations have declined from approximately 80 birds in 1984 to about 20 by the early 1990's. A thorough inventory of all potential habitat, habitat research, and appropriate management projects are needed to ensure that Oregon doesn't lose this unique species. (Birds Cont.) | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|-----------------|--|---|--|--| | Common nighthawk
(Chordeiles minor) | WV | Gravel bars and other sparsely vegetated grasslands for nesting; aerial insectivore prey base for foraging | Loss of nesting habitat, increased predation by corvids, gulls and house cats; reduction in prey base (aerial insects) | Inventory of gravel bars along large rivers for nesting birds | Maintain sparsely vegetated
grassland patches, restore
riparian and wetland habitats for
insect prey base | | Dusky Canada goose
(Branta canadensis
occidentalis) | WV | Adequate food resources (high quality, high protein herbaceous plants) in sufficient spatial and temporal distibution to sustain migratory and wintering population. | Decline in this species is primarily due to poor reproduction in its breeding range in Alaska. However, this species winters in Oregon, so Oregon can contribute to its conservation. Currently, wintering habitat is being lost due to conversions from farmland to developed areas. Also, its use of private lands limits management options. | Effects of habitat loss on movements and use of private lands. | Information on conservation
strategies is available in the
Pacific Flyway management plan
and Conservation Assessment for
the Dusky Canada Goose
(USFWS) | | Ferruginous hawk
(<i>Buteo regalis</i>) | BM
CP
NBR | Uses open, grassy habitats with scattered shrubs or trees, including grassland and sagebrush steppe; large area requirements; suitable nest sites in scattered juniper trees, in cottonwood trees near small streams, or on rocky sites with an expansive view; also nests on rimrock or on undisturbed ground | Populations fluctuate based on prey availability; sensitive to human disturbance during the nesting season; loss of mature juniper trees in suitable nesting areas; conversion of juniper savanna to juniper woodland in some areas due to fire suppression | Relationships with prey species,
especially in agricultural
landscapes; impacts of wind
turbines in Columbia Plateau | Provide diverse herbaceous and low shrub vegetation to support prey populations (jackrabbits and ground squirrels); maintain known and potential nestsite trees (mature juniper); minimize human disturbance (including rodent control and chemical applications) within 0.6 miles of active nest sites from March 5 – June 15; work cooperatively with agricultural landowners to maintain average field size <40 ac and >25% of nesting areas natural vegetation at priority sites | | Flammulated owl
(Otus flammeolus) | BM
EC | Requires small patches of dense thickets for roosting; small openings of grasslands or dry meadows for foraging on insect prey; medium to large snags and defective trees with existing woodpecker cavities | Habitat degradation from encroaching trees and shrubs; loss of mature ponderosa pine trees and snags; lack of recruitment of young ponderosa pine; insect control may affect prey base; snag/cavity abundance (because this species is the last cavity-nesting migrant to return) | Thorough inventory of distribution; impacts of forest management practices and habitat suitability of managed forests; basic nesting ecology and habitat use | Retain existing or manage to meet conditions of mature woodland and forest (>1 snag/1 acres >20 in dbh¹) in areas with > one large or two small sapling thickets and > one large or two small grassy openings; minimize insect control near known sites; monitored nest box programs in snag-deficient areas to provide cavity habitat in the short term | | Fork-tailed storm-petrel
(Oceanodrama furcata) | CR | Coastal islands with deep sandy soil for burrowing amid ground cover vegetation | Small population; vulnerability of specialized nesting habitat to predation from non-native and artificially abundant native predators; high potential vulnerability to oil spills | Diet; breeding biology; foraging areas | Maintain existing closure of nesting areas to human visitation; continue implementing Environmental Assessment for mammalian predator control at Oregon seabird colonies | | Franklin's gull
(<i>Larus pipixcan</i>) | NBR | Relatively large marsh habitat with both emergent vegetation for nesting and deep water (to ensure foraging habitat through breeding season and to prevent access to nests by predators) | Small, disjunct breeding
population; specialized nesting habitat; sensitivity to nesting disturbance and fluctuating water levels | Factors influencing dependence
on upland foraging versus marsh
foraging (e.g., marsh size,
characteristics). Identify
landscape-level breeding and
post-breeding habitat needs for
responding to annual site-specific
changes in water levels | Minimize human disturbance in nesting areas during breeding season and in shallow feeding areas. Where appropriate, manage water levels to provide suitable foraging and nesting habitat. | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|----------------|---|---|--|--| | Grasshopper sparrow
(Ammodramus
savannarum) | CP
KM
WV | Dry grassland habitat with low to
moderate grass height and low
percent shrub cover | Small, disjunct populations; loss of grassland habitats due to conversion and shrub/tree encroachment; nesting failure due to timing of land use practices (e.g., mowing, haying, spraying). | Complete population inventory and habitat evaluation; effects of habitat patch size on abundance and productivity; effectiveness of planting mixtures to favor this species; impact of grazing and agricultural management on productivity | Maintain or restore grassland habitat; increase plant diversity for greater insect diversity; maintain high percent native grass cover and <10% shrub cover in patches > 20 acres; delay mowing and other field management until after July 15 at known nesting areas; control key invasive plants | | Great gray owl
(Strix nebulosa) | BM
EC | Late successional forests for
nesting with nearby grassy
openings for foraging; requires
large-diameter snags or suitable
branch structure (e.g., brooms
from mistletoe) for nesting | Has large area requirements; is
affected by reductions in amount
of late successional forest and
montane grasslands | Value of harvested forest openings as foraging habitat; effects of rodent control | Maintain late successional forest;
maintain natural meadow forest
openings through prescribed fire,
thinning and hand-removal of
encroaching conifers | | Greater sage-grouse
(Centrocercus
urophasianus) | BM
NBR | Require large areas of contiguous sagebrush habitat including a mosaic of conditions; wet meadows and playas during brood rearing, especially areas with native forbs | Population declines and local extirpations; disjunct populations; habitat loss and fragmentation; juniper expansion into sagebrush; impact on sagebrush of increased fire frequency and intensity because of invasive annual plants; dependence on specific conditions for suitable lek sites; human disturbance at lek sites | See detailed presentation in
Greater Sage-Grouse
Conservation Assessment and
Conservation Strategy for Oregon
(in preparation, 2005) | See detailed presentation in
Greater Sage-Grouse
Conservation Assessment and
Conservation Strategy for Oregon
(in preparation, 2005) | #### **Red Crossbills** A bird's primary tool for finding and handling food is its beak. Depending on the type of bird, a beak (also called a bill) may serve as a spear, probe, net, knife, strainer, nut-cracker, pliers, or drill. Of Oregon's birds, the red crossbill has one of the most unusual and interesting beaks. As the bird's name implies, the upper and lower halves of the beak cross at the tip. Using the cross like a lever, the crossbill can pry seeds from partly-opened cones more efficiently than any other bird. Red crossbills primarily eat Douglas-fir, spruce, hemlock and pine seeds, but will occasionally eat deciduous leaf buds, alder cones, and insects. Red crossbills are thought to include several "groups" with slightly different bills that enable them to exploit variation in seed sizes. Because of their specialized diet, red crossbills are highly dependent on conifer seed crops. Like most trees that produce seeds, conifers periodically have heavy seed crops. This phenomenon is called "masting" and ensures that enough seeds escape seed predators (such as insects, birds and rodents) to allow adequate tree germination. For example, ponderosa pine, which produces a cone crop every 2-3 years, produces a particularly heavy crop every 8-9 years. Red crossbills respond to variable food availability by being highly nomadic, moving across the landscape in search of seeds. They travel in flocks of a few to several hundred. Depending on the local seed crop, they can be locally common or completely absent from an area. Red crossbills breed in mature conifer forests because of the larger cone crops associated with older trees. The timing and success of crossbill reproduction is closely tied to seed availability. As a result of their food-based movements, crossbills need a mosaic of older forest types across watersheds. Some wildlife species travel across many habitats and require a landscape approach to conservation. Cooperative large-scale approaches such as watershed-based efforts can benefit crossbills and other landscape speciess with wide ranges, including forest carnivores, salmon, bats, and migratory birds. | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|----------------------|---|--|---|---| | Greater sandhill crane
(Grus canadensis tabida) | EC
NBR
WC | Relatively large wetland-wet/dry
meadow complexes with a
mosaic of aquatic and
herbaceous conditions for
nesting and foraging | Large area requirements. Sensitive to disturbance. Reductions in wetland/wet meadow quality, quantity, and size due to hydrological changes, succession (shrub and conifer encroachment), and/or livestock grazing. Nesting failure due to timing of land management practices (e.g. mowing, grazing). Coyote predation on young. Raven predation on eggs. | Habitat area requirements relative to the quality of the habitat. Difference in food resource utilization in wet and dry meadows and at different breeding sites. Effects of pesticides on food resources. Impact of livestock grazing on habitat suitability; impact of nest predation under different habitat conditions; impacts from disturbance due to recreational use (e.g., OHVs) | Maintain and/or enhance hydrological conditions to support suitable habitat conditions for nesting and foraging in tracts >20 ac. Where hydrology can be managed, include both wet and dry meadow habitat through the nesting season. Minimize disturbance during breeding season (4/15 - 7/31) at known nesting areas. Use prescribed burning or hand-felling of trees periodically to set plant succession. | | Juniper titmouse
(Baeolophus ridgwayi) | NBR | Mature juniper trees with cavities for nesting; expansive areas of mature juniper habitat, especially in winter | Small, disjunct populations;
reduction and fragmentation of
stands of mature juniper trees
from development, wildfire, or
juniper management | Distribution and estimated population size and status; habitat patch size requirements for a population, especially in winter | Maintain large stands of mature juniper within the species range; maintain mature juniper trees when thinning encroaching small juniper trees (see information about juniper age composition in Blue Mountains ecoregion and Limiting Factors section) | | Leach's
storm-petrel
(Oceanodrama
leucorhoa) | CR | Coastal islands with deep sandy soil for burrowing and cover of the grass <i>Phalaris</i> and other grass and forb species | Specialized nesting habitat;
vulnerability of specialized
nesting habitat to predation from
non-native and artificially
abundant native predators; high
potential vulnerability to oil spills;
vulnerability to plastic ingestion
due to surface foraging behavior | Breeding biology; foraging areas | Maintain existing closure of
nesting areas to human visitation;
continue implementing
Environmental Assessment for
mammalian predator control at
Oregon seabird colonies | | Lewis' woodpecker
(<i>Melanerpes lewis</i>) | BM
CP
EC
KM | This species has 5 major habitat types: ponderosa pine, oak woodlands, oak-pine woodlands, cottonwood riparian forests, and areas burned by wildfires. In all cases, special needs are aerial insect populations for foraging; large snags for nesting, especially soft or well-decayed snags; and relatively open canopy for flycatching | Population declines and local extirpations; habitat loss and degradation; loss of old cottonwood snags; competition from starlings for nest cavities; large areas of suitable habitat on private lands | Thorough inventory of distribution and analysis of habitat relationships; impact of grazing on insect productivity in undergrowth; determine usefulness of providing nestboxes | Maintain or restore open oak, ponderosa pine, and cottonwood woodlands along with post-fire ponderosa pine habitats that provide canopy cover <40% and shrub cover 30-80% with 6 trees/acre > 32 feet tall and 6 snags/acre > 20 in dbh | | Little willow flycatcher
(Empidonax traillii
brewsteri) | WV | Brushy patches of vegetation adjacent to water for nesting and foraging | Declining populations; loss of riparian shrub habitat | Prey base requirements and site selection relative to prey base | Restore brushy patches of willow
and other native shrubby habitats
near water | | Loggerhead shrike
(<i>Lanius ludovicianus</i>) | BM
CP | Tall sagebrush for nesting and roosting and openings with grasses and significant bare ground for foraging | Habitat loss; population declines;
loss of sagebrush to high
intensity wildfires | Post-fledging survivorship as a
function of habitat quality;
impacts of pesticide use on prey
base, especially grasshoppers | Maintain late seral sagebrush with patches of tall shrubs (>1m) with <15% shrub cover, <20 herbaceous cover, and >30% open ground cover | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|---|--|--|--| | Long-billed curlew
(Numenius americanus) | CP
NBR | Open habitats with relatively short grass and few or no trees/shrubs. In Northern Basin and Range ecoregion, much of the suitable habitat is comprised of sub-irrigated meadows created by adjoining flood irrigated meadows. | Historic habitat loss and continued conversion of grassland habitats to agriculture; population declines in some areas; human disturbance during nesting | Nest success and viability of populations nesting in agricultural fields; impact of human disturbance and land-use practices; post-fledging habitat use and survival | Partnerships with private landowners to maintain and restore large patches of short grass habitat. For example, ranching has provided much habitat for this species (i.e., Lower Silvies River Valley). Minimize human disturbance during Mar 15 - July 1 at known nesting areas | | Marbled murrelet
(<i>Brachyramphus</i>
<i>marmoratus</i>) | CR
KM | Late-successional forest with specific nest tree characteristics | Reductions in late-successional
forest. Low reproductive output
combined with low reproductive
success. Habitat loss due to
uncharacteristically severe fire in
Klamath Mountains ecoregion | Role of isolation and/or fragmentation of nesting habitat with levels of nest predation. Minimum area requirements. | The Northwest Forest Plan and Federal and State Recovery and Conservation Plans provide information on network of conservation reserves and management requirements for this listed species | | Mountain quail
(<i>Oreortyx pictus</i>) | NBR | Shrubby riparian habitats and adjacent to grassy uplands | Range retractions and local
extirpations; small, disjunct
populations | Wintering habitat requirements | Partnership programs with private landowners to maintain and/or provide suitable habitat; coordinate riparian restoration with management of suitable adjacent uplands | | Northern goshawk
(Accipiter gentiles) | EC
WC | Large area requirements with a mosaic of forest stages, forest openings, and habitat components (e.g., snags, down logs); open forest floor for access to ground dwelling prey | Large area requirements. Affected by reductions in amount of late successional forest | Estimated population densities | Maintain late successional forest habitat. Maintain natural forest openings through prescribed fire, thinning and hand-removal of encroaching conifers | #### Western Meadowlark In 1927, Oregon's school children voted the western meadowlark as the State Bird. Meadowlarks' bright, cheerful colors, beautiful songs, and common appearance in farm and ranch lands endear them to many Oregonians. Due to habitat loss, they are no longer common in some parts of Oregon and have become particularly rare in the Willamette Valley. Other grassland birds, such as western bluebird, Oregon vesper sparrow, horned lark, grasshopper sparrow, and common nighthawk, also need open grassy areas to feed and raise their young. Along with the meadowlark, these species are declining in numbers. Grassland birds eat insects, and can serve a role in reducing economically harmful insect populations. Fortunately, most of the grassland birds can live alongside people if certain habitat features are provided, such as increased herbaceous plant diversity. Landowners can also help grassland birds by timing field maintenance either before or the breeding season and by reducing impacts by free-roaming cats. Fallow fields, lightly-grazed pastures, grass seed fields, vineyards, and Christmas tree farms can provide habitat for grassland birds and some other wildlife. | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|----------------|--|--|---|--| | Northern spotted owl
(Strix occidentalis caurina) | CR
KM
WC | Late successional forest or
younger forest with residual late
successional components | Declining. Large home range requirements. Reductions in late successional forest. Hybridization with and competition from barred owl. Sensitive to West Nile Virus. Habitat loss due to uncharacteristically severe fire in Klamath Mountains ecoregion. | Status of populations in landscapes managed for timber production (<i>i.e.</i> , where retention of trees and snags was practiced). Minimum area requirements. | The Northwest Forest Plan and Federal and State Recovery and Conservation Plans provide information on network of conservation reserves and management requirements for this listed species | | Olive-sided flycatcher
(Contopus cooperi) | CR
EC
WC | Open older coniferous forest, forested riparian habitat, forest openings (e.g., burns, harvested forest), or forest edge with tall, prominent trees and/or snags; hemlocks or true firs for nest trees | Relatively large area requirements
(compared to other songbirds).
Increased predation rates in
harvest units within a landscape
of older forest or highly
fragmented forests | Comparison of prey resources
and reproductive success in burns
and harvested forest and within
various harvest types | Maintain scattered large dead
trees in patchy wildfires; maintain
natural openings but minimize
harvested forest openings within
landscapes of older forest | | Oregon vesper sparrow
(Pooecetes gramineus
affinins) | KM
WV | Grasslands for foraging and
nesting, usually with scattered
shrubs/trees and some bare
ground | Small disjunct
populations; loss and degradation of grassland habitats due to invasive plants and lack of fire; Nesting failure due to timing of land management practices (e.g. mowing, haying, spraying), predation by house cats in some areas | Impact of grazing and
agricultural management on
productivity | Maintain or restore grassland habitat, increase plant diversity for greater insect diversity, control key invasive plants, minimize disturbance during breeding season (4/15 - 7/15) at known nesting areas. | | Pileated woodpecker
(<i>Dryocopus pileatus</i>) | ВМ | Mixed coniferous forests,
especially late successional
stands; large-diameter trees and
snags for nest and roost sites;
large-diameter snags and logs for
foraging sites | Habitat fragmentation;
reductions in snag availability due
to fire suppression and forest
health management | Habitat suitability of managed forests with large dead wood maintained | Maintain and create large-
diameter hollow trees, snags, and
logs during forest management
activities | | Red-necked grebe
(<i>Podiceps grisegena</i>) | EC | Large lakes and ponds within a forested landscape; needs both deep water and marshy emergent vegetation for nesting and foraging habitat | Small isolated population. Susceptibility to pesticide impacts on reproduction. Needs high water quality with diverse invertebrate and fish prey resources | Impacts of recreational boating on reproduction. Sources of water quality degradation at nesting site(s) | Maintain and restore marshy
vegetation. Minimize
disturbance to nest sites during
nesting season | | Rock sandpiper
(Calidris ptilocnemis) | CR | Rocky coastal habitats with sufficient intertidal invertebrate prey | Small migrant/wintering
population and regional declines.
High vulnerability to potential oil
spills | Basic wintering ecology. Impact of human disturbance on population distribution and health. | Identify high priority sites. | | Sage sparrow
(Amphispiza belli) | СР | Primarily occurs in big sagebrush
communities; requires high shrub
cover and low grass and litter
cover in relatively large patches | Sensitive to fragmentation;
negative association with densely
growing annual invasive plants
such as cheatgrass; loss of
sagebrush to high intensity, high
frequency wildfires because of
invasive grasses; sensitive to
grazing | Area requirements; conditions to maintain source populations; effects of cowbird parasitism | Maintain sagebrush cover at 10-
25% and height > 20in, with
<10% invasive annual grasses,
and open ground cover >10% in
patches >400 acres where
possible | | Short-eared owl
(Asio flammeus) | W | Large expanses of marshes and wet prairies for foraging and nesting. | Loss of large expanses of wetland
(marsh and wet prairie) habitat.
Small population. Nests and
comunally roosts on ground,
which makes species vulnerable to
disturbance. | Complete breeding season inventory of suitable nesting habitat. Habitat relationships of breeding and wintering birds. | Maintain and restore wetland habitats, with an emphasis on maintaining large patches and/or expanding smaller ones. Minimize disturbance at known communal roost sites. | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|--|---|---|--| | Slender-billed (white-
breasted) nuthatch
(Sitta carolinensis aculeate) | | Mature oak trees for foraging and nesting cavities | Fewer mature oaks, fewer cavities | Patch size requirements | Maintain large oaks >22 in. dbh.,
develop nest box programs for
cavity habitat in the short-term | | Snowy egret
(Egretta thula) | NBR | Tree, shrub, or stout herbaceous vegetation such as hardstem bulrush for nest sites | Small, disjunct populations;
declining population trends;
colonial nester; sensitive to
human disturbance | Factors contributing to and effects from competition with other herons and egrets, especially non-native cattle egrets | Minimize human disturbance in nesting areas during breeding season | | Streaked horned lark
(Eremophila alpestris
strigata) | W | Open, treeless expanse of
sparsely vegetated grassland
areas (including bare ground
patches) for nesting and foraging | Declining populations; Loss and degradation of grassland habitat; Nesting failure due to timing of land management practices (e.g. mowing, haying, spraying). | Identification of factors limiting
nest success and post-fledgling
survival; habitat relationships of
wintering birds | Maintain or restore sparsely vegetated grassland habitat, create nesting areas, increase plant diversity for greater insect diversity, control key non-native plants; designate locations to be managed for core populations; minimize disturbance during breeding season (4/15 - 7/15) at known nesting areas | | Swainson's hawk
(Buteo swainsoni) | CP
NBR | Expansive open grassland habitat with occasional suitable nest trees and adequate small mammal prey populations | Declining populations; relatively
large area requirements; habitat
loss and fragmentation;
mortality on South American
wintering grounds due to
improper pesticide use | Factors contributing to and effects from competition with red-tailed hawks, particularly in areas where nest trees or prey base is limited by habitat degradation | Partnerships with private landowners; protection of nest trees; maintain herbaceous conditions to support adequate abundance and diversity of small mammal and insect prey. (Note: Winter ground issues are being addressed through international cooperation). | | Tufted puffin
(Fratercula cirrhata) | CR | Coastal nest sites that are inaccessible to mammals and have steep slopes and deep soil for burrowing | Declining populations. Vulnerability of specialized nesting habitat to impacts from humans and introduced predators. High potential vulnerability to oil spills | Factors contributing to declining populations: marine or other factors? | Maintain existing sites free from introduced predators and levels of human disturbance that negatively impact nesting success | | Upland sandpiper
(<i>Bartramia longicauda</i>) | BM | Large breeding area requirements; wet and dry meadows in small valleys such as Logan Valley, Bear Valley and around Ukiah; medium-length grasses with high plant diversity; current habitat includes nearby lodgepole pine and sagebrush | Very small, disjunct populations;
encroachment of meadows by
lodgepole pine (possibly due to
fire suppression and/or changes
in water distribution) | Thorough inventory of distribution; analysis of habitat relationships and requirements; relationship between land use and habitat suitability | Partnerships with private landowners to determine and implement appropriate conservation on suitable habitat patches; remove encroaching lodgepole pine trees in meadows | ## Flammulated Owl Petite stature, exclusively insect prey, and migratory habits make the flammulated owl unique among northwestern owls. One of the smallest owls in North America, the flammulated owl weighs just under 2 ounces. Unlike most of Oregon's owls which are year-round residents, the flammulated owl migrates to Mexico and Central America for the winter. This small owl is closely associated with older ponderosa pine woodlands, but is sometimes found in dry mixed ponderosa-conifer stands. Thickets of small trees are important for roosting habitat, and open understories, small openings, or meadows are critical for foraging. The flammulated owl nests in unused woodpecker cavities carved into medium to large-diameter ponderosa pine or, to a lesser extent, larch trees. This owl's complex habitat needs are a reminder that restoration efforts should maintain community diversity by incorporating openings, thickets, and snags into restoration plans. In addition to helping species with complex biological needs, providing diverse habitat features supports habitat for a greater variety of wildlife. | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--------------|---|---
---|--| | Western bluebird
(Sialia mexicana) | WV | Grasslands and oak savannas
for foraging, cavities, especially in
savanna oaks for nesting,
scattered trees or shrubs as
hunting perches | Habitat loss, habitat degradation
due to invasive non-native plants
and lack of fire, competition for
cavities from non-native birds,
predation by house cats | Location and factors key to
success for natural cavity-nesting
pairs | Maintain or restore grassland and oak savanna habitat, maintain oaks >22 inches dbh, create snags from competing conifers, maintain nest box programs for cavity habitat in the short-term, design and place nest boxes to minimize use by starlings | | Western burrowing owl
(Athene cunicularia
hypugaea) | СР | Burrows (created by other
species, particularly badgers) for
nesting; high proportion of bare
ground near burrow | Reduction in adequate size and number of burrows due to habitat loss and reduction in burrowing mammal populations; illegal shooting of owls; disturbance during nesting season; collisions with vehicles; collapse of burrows by livestock trampling; control of badger populations in agricultural lands. | | Maintain open ground cover >40-70%, shrub cover <15%, and native grass cover <40% and <6 in tall in nesting areas; provide 200 m buffer zones around nest burrows where pesticide applications, rodent control and human disturbance is minimized; protect badger populations in areas where burrowing owls are present | | Western meadowlark
(Sturnella neglecta) | WV | Large expanses of grasslands for
foraging and nesting due to
relatively large home range
requirements; scattered shrubs,
trees or posts for singing perches | Declining populations; loss and degradation of grassland habitats; nesting failure due to timing of land management practices (e.g., mowing, haying, spraying). | Impact of grazing and agricultural management on productivity | Maintain or restore grassland habitat - especially large expanses of habitat (e.g., >100 acres), increase plant diversity for greater insect diversity, control key non-native plants, minimize disturbance during breeding season (4/15 - 7/1) at known nesting areas | | Western purple martin
(<i>Progne subis</i>) | KM
WV | Abundant cavities for colonial nesting. Proximity to water or large, open areas for foraging | Loss of nesting cavities.
Competition with starling for
nest cavities. Adequate aerial
insect prey base | Complete inventory of distribution. Ability to attract migrating birds with nesting structures | Create and maintain appropriate snags. Maintain nest box programs for cavity habitat in the short-term. Design and place nest boxes to minimize use by starlings | | Western snowy plover
(Charadrius alexandrinus
nivosus) | CR
NBR | Coast Range - Sandy and sparsely vegetated shoreline above high tide for nesting habitat Northern Basin and Range - Alkaline flats and salt pans associated with springs, seeps, or lake edges | Coast Range - Small and declining population. Loss and degradation of habitat from natural and human-associated factors (including European beachgrass). Human disturbance of nesting birds. Increased predator populations Northern Basin and Range - Small, disjunct populations; declining population trends; nesting sensitivity to fluctuating water levels | Coast Range - Temporal and spatial effects of predator control activities on reproductive success Northern Basin and Range - Identification of landscape-level breeding and post-breeding habitat needs for responding to annual site-specific changes in water levels | Coast Range – Draft federal recovery plan and Oregon Parks and Recreation Department's Habitat Conservation Plan for the Western Snowy Plover provide information on conservation actions. Note: federal status for this species is currently under review. Northern Basin and Range - Maintain suitable nesting and foraging areas across the landscape to provide habitat regardless of annual variation in precipitation and water levels. | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|----------------|---|--|--|--| | White-headed
woodpecker
(<i>Picoides albolarvatus</i>) | BM
EC
KM | Large tracts of open ponderosa
pine woodlands with mature
trees for foraging and snags for
nesting | Population declines and local extirpations. Loss of mature ponderosa pine trees and snags. Habitat degradation from encroaching trees and shrubs, and lack of recruitment of young ponderosa pine into larger size classes. Egg predation in areas of high predator (most likely chipmunks and golden-mantled ground squirrels) densities associated with shrubs and down wood | Distribution; impacts of forest
management practices and
habitat suitability of managed
forests; predation rates by
individual predator species;
habitat relationships of rodent
egg predators | Retain existing or manage to meet conditions of large tracts (>700 acres outside old-growth) of open (canopy closure 10-40%) mature (>10 trees/ac > 21 in dbh¹ and 1.4 snags/acre >8in dbh) woodland; Retain snags and high cut stumps in management; eliminate or restrict fuelwood cutting of stumps and snags in suitable habitat | | Willow flycatcher
(Empidonax traillii adastus) | NBR | Riparian shrub dependent; dense continuous or near-continuous shrub layer, especially of willows | Population declines; loss and degradation of riparian shrub habitat from altered hydrological regimes and invasive species; cowbird parasitism | Site and landscape factors that contribute to cowbird parasitism | Partnerships with private landowners to maintain and restore habitat and control priority invasives: dense riparian shrub patches (especially willow) > 10 square yards in size with 40-80% shrub cover > 3 ft high; discourage cowbird use of riparian areas through seasonal timing of grazing and/or maintaining high grass heights in priority areas | | Yellow rail
(Coturnicops
noveboracensis) | EC | Narrow range of water depths
and presence of senescent
vegetation within sedge
meadows | Small, disjunct population. Specific wetland types and conditions. Intensive livestock grazing that removes >50% of senescent vegetation. Hydrological changes from wetland draining or inundation | Complete inventory of other potential breeding habitats in southcentral Oregon. Prey selection and its potential relationship with preferred water levels | Maintain preferred water levels
of approximately 2.4-2.8 inches
during the breeding season.
Maintain at least 50% of
senescent vegetation from year
to year | | Yellow-breasted chat (Icteria virens) | WV | Dense brushy thickets, especially near streams | Loss of larger patches of dense riparian shrub habitat | Nesting ecology and habitat
relationships in riparian habitat;
patch size requirements | Restore relatively large areas of
dense thickets of native shrub-
dominated riparian habitats | Recommended tree size is the average within the range typically used by the species. ## Raptors and Grassland Songbirds Northeastern Oregon is home to the state's largest and most intact native grasslands. This expansive open country is important to a variety of grassland-dependent birds, including raptors and songbirds. High ground squirrel populations are prey for an impressive array of raptors, including golden eagles; prairie falcons; and ferruginous, Swainson's, red-tailed, and roughlegged hawks. In fact, Zumwalt Prairie may host one of the highest raptor populations in the nation. Grasslands also feature a variety of wildflowers, which host diverse insects. The insects are food for grassland songbirds, such as savanna sparrows, western meadowlarks, horned larks, and vesper sparrows. Oregon State University researchers led by Dr. Pat Kennedy are studying bird populations in the Blue Mountains' grasslands. Current research includes landscape factors that affect raptor nest site availability and the effects of invasive plants on grassland songbirds. Such information can assist landowners and managers in providing habitat for Oregon's
grassland-dependent species. Conservation Summaries for Strategy Species –Reptiles (5 species): | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|---|---|--|--|--| | Common kingsnake
(Lampropeltis getula) | KM | Associated with a variety of habitats including grassland, valley, prairie, streams. Require cover for hiding (rocks, vegetation, logs, etc). | Land use activities that fragment
populations. Disturbance to
riparian or leaf litter hiding
substrate. | Reproduction including parental care. Home range. Predators and possible defense mechanisms. | Use research results to guide management actions to protect specific populations. Note: may occasionally prey on rattlesnakes. | | Northern sagebrush
lizard (Sceloporus
graciosus graciosus)
Western painted turtle
(Chrysemys picta) | BM CP EC WC WV (Note: occurs only along the Columbia River in CP, EC and WC ecoregions) | Steppe habitats with sandy soils and sparse vegetation in the grass/forb layer Marshy ponds, small lakes, slow-moving streams and quiet off-channel portions of rivers; prefer muddy bottoms with aquatic vegetation; need open ground for nesting. Need logs/vegetation for basking | Habitat loss and fragmentation. Limited ability to disperse Loss of aquatic and nesting habitats (conversion, invasive species). Particularly in the Willamette Valley: predation by bullfrogs, bass, and raccoons; competition with invasive turtles | Estimated population size and trends. Effects of fragmented habitat on populations Impacts from disease introduced and/or spread by non-native turtles. Population dynamics and population genetics. Especially in Willamette Valley: Impacts of raccoons and invasive species (turtles, fish and bullfrogs) | Maintain habitat patches; restore habitat connectivity where possible Provide basking structures and nesting habitats; control invasive plants and animals Protect important nesting sites from disturbance. Use wire cages to protect nests from raccoons at key sites in the short-term where this is a problem | | Northwestern pond turtle (Emys marmorata marmorata) | CR
EC
KM
WC
WV | Marshes, streams, rivers, ponds, and lakes. Sparsely-vegetated ground nearby for digging nests. Basking structures such as logs | Loss of aquatic and nesting habitats (conversion, invasive plants). Particularly in the Willamette Valley and Coast Range: predation by raccoons, invasive bass and bullfrogs; competition with invasive turtles | Population dynamics and population genetics. Especially in Coast Range and Willamette Valley: Impacts of raccoons and invasive species (turtles, fish and bullfrogs) | Provide basking structures and nesting habitats; control invasive plants and animals. Protect important nesting sites from disturbance. | | Western rattlesnake
(Crotalus viridis) | WV | Dry areas with low or sparse vegetation. Rocky areas for basking, refuge den sites and hibernacula | Habitat loss. Eradication efforts | Locations of remnant western rattlesnake populations and hibernacula | Maintain or restore low grassland
habitat near rocky areas,
minimize disturbance at key den
and hibernacula sites | # Oregon's Turtles Oregon has only two native turtle species: the northwestern pond turtle and the western painted turtle. The northwestern pond turtle is found in lowlands throughout western Oregon, while the western painted turtle is limited to the northern Willamette Valley and Columbia River. Both turtles are dark brown or dull olive, but the western painted turtle is brightly decorated with a reddish lower shell and yellow stripes on its neck and legs. Both turtles are approximately 4-9 inches long as adults, are slow to develop and reproduce, and eat a variety of foods including plants, insects, and tadpoles. Oregon's turtles are declining in Oregon due to habitat loss, degradation of nesting areas by invasive plants, competition and perhaps disease from invasive turtles, nest > predation by raccoons, and predation on young turtles by invasive bullfrogs and fish. Because turtles use both wetland and upland habitats dur ing the year, they are particularly sensitive to habitat loss. Landowners can help Oregon's turtles by providing shallow wetland habitats, basking structures such as logs, and open grassy nesting areas. | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|----------------|--|---|--|---| | Cascades frog (Rana
cascadae) | EC
WC | Mountain meadows, bogs, ponds or potholes above 2,400 feet elevation. Lays eggs in shallow sunny edges of ponds, or on low vegetation near ponds where warm sunlight speeds egg development and spring rains allow hatchings to swim into ponds. Larvae "school" in large masses. | Montane species vulnerable to genetic isolation. Experiencing substantial reductions in southern parts of range (e.g., CA). | Feeding habits. Possible effects of introduced fishes, pathogens, and airborne environmental pollution. Habitat characteristics that could enhance migration and gene flow. Feasibility studies on reintroduction at historic sites. | Maintain connectivity of habitat. Monitor effects of fish stocking and water quality on populations. Carefully manage livestock grazing in occupied wet meadows. Use prescribed burning or hand-felling of trees periodically to set plant succession. Reintroductions should use individuals from nearby populations; use results feasibility studies to guide further actions. Conservation actions in Oregon are particularly valuable given reductions in other parts of range. | | Cascade torrent
salamander (<i>Rhyacotriton</i>
<i>cascadae</i>) | WC | Cold, fast-flowing, clear, permanent headwater streams, seeps and waterfall splash zones in forested areas. Gravel or small cobble substrate with continuous but shallow water flow for larvae and adults foraging and hiding. May only occur in streams on basalt rock. Continuous access to cold water. | Larvae take several years to reach sexual maturity. Small clutch size (7-16 eggs) and long time to hatch (up to 10 months). Larvae have minute gill surface area, so very sensitive to increased temperature and sediment. | Species-specific breeding habits
(because of relatively recent
taxonomic split of torrent
salamanders). Dispersal | Maintain stream buffers to maintain cool water temperatures and water clarity. Little or no sediment coating or embedding rocky substrates. Replace culverts as needed to remove barriers in continuous, natural streambed and streambank habitats. | | Clouded salamander
(Aneides ferreus) | CR
KM
WC | Forest habitats or burned areas.
Require large decaying logs,
especially Douglas-fir | Limited range (occurs primarily in Oregon). Loss of large logs | Habitat relationships with burns; effects of fires on populations | Maintain large logs during forest management activities | | Coastal tailed frog
(Ascaphus truei) | CR
KM
WC | Cold, fast-flowing, clear streams within forested areas. Adults need streambanks, logs, headwater springs, and gravelly seeps for foraging and hiding, and small boulders in streams for egg laying. Tadpoles need permanent streams
with mossand sediment-free cobble and boulder substrate for clinging to rock surfaces while scraping diatoms and algae. In Coast Range, may be limited to streams with hard-rock substrate rather than sandstone. | Limited range (northwest endemic). Low reproductive rate due to several-year larval stage. Remains close to water source; low dispersal abilities may limit recovery of populations. Sedimentation. Increases in water temperature. | Growth rates after
metamorphosis.
Internal reproduction dynamics | Maintain stream buffers to maintain cool water temperatures and water clarity. Little or no sediment coating or embedding rocky substrates. Replace culverts as needed to remove barriers in continuous, natural streambed and streambank habitats. | | Columbia spotted frog
(<i>Rana luteiventris</i>) | BM
NBR | Permanent ponds, marshes and meandering streams through meadows for breeding and foraging, especially with bottom layer of dead and decaying vegetation | Slow to reach reproductive maturity. Predation and competition by invasive fish and bullfrogs. Siltation. Lowering of water tables through downcutting of stream channels | Impacts of invasive species,
document dates/locales of past
locales and survey to determine
range status and trend. Impacts
of grazing on habitat and
populations. | Maintain vegetation buffers
around known populations.
Control bullfrogs and invasive
fish at priority sites | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|----------------------|--|---|---|--| | Columbia torrent
salamander (<i>Rhyacotriton</i>
<i>kezeri</i>) | CR | Cold mountain streams, spring heads and seeps. Require loose gravel stream beds with specific geologic characteristics. Specific requirements for stream gradients. | Limited dispersal. Adults are highly sensitive to drying. Larvae sensitive to changes in stream flow. | Distribution. Response to management activities at varied scales | Maintain stream buffers to maintain cool water temperatures and water clarity. Minimize disturbance at known suitable sites. | | Cope's giant salamander
(Dicamptodon copei) | CR
WC | Cold, fast-flowing, clear, permanent streams in coniferous forests. Deep cobble and small boulder substrate for foraging and hiding. Rocky streambanks or in-channel logs with crevices for eggs and larvae. | Limited range in Oregon. Rarely or never metamorphose, so highly vulnerable to channel dewatering and barriers to stream connectivity; very small gill surface area, so sensitive to increases in temperature and sediment. | Information on reproduction
(parental care, number of
clutches per female per year).
Frequency of naturally occurring
terrestrial individuals | Maintain stream buffers to maintain cool water temperatures and water clarity. Little or no sediment coating or embedding rocky substrates. Replace culverts as needed to remove barriers in continuous, natural streambed and streambank habitats. | | Foothill yellow-legged
frog (<i>Rana boylii</i>) | CR
KM
WC
WV | Slow-moving streams with coarse-substrate gravel bars, bedrock substrate with potholes, and low-flow backwaters | Range in Oregon has shrunk due to habitat loss from inundation and other hydrologic modifications. Loss of gravel bars and low-flow nursery areas. Sedimentation | Current distribution. Non-breeding season habitat. Identify overwintering habitat. Feasibility studies on reintroduction at historic sites. Compare population dynamics and natural history between populations towards center of range (Klamath Mountains ecoregion) and those that at the northern end of the range (Willamette Valley and West Cascades ecoregion). | Maintain natural water flow patterns and streamside vegetation and protect from other impacts at priority breeding sites. Especially for populations in West Cascades and Willamette Valley: Use results of feasibility studies to guide specific conservation actions and management decisions for reintroductions. | | Inland tailed frog
(Ascaphus montanus) | BM | Stream breeding. Prefer clear,
cold habitat with cobbles and
boulders for larvae, which are
adapted to cling to rocks and
scrape diatoms. Adults forage for
insects at night | Low reproductive rate (multi-year larval development; small number of eggs per female). Sedimentation of streams from roads or forest practices; increased temperatures due to degraded riparian habitat | Population dynamics | Modify activities to provide continual riparian cover and minimize sedimentation; maintain shade for cooler temperatures | | Larch Mountain
salamander (<i>Plethodon</i>
<i>larselli</i>) | WC | Basalt talus slopes of Columbia River Gorge and northern Cascade Mountains. Adapted to well-drained, gravel to small cobble-sized talus with a significant component of fine litter and debris. May occur in late-successional forest especially with gravel or fractured rock in the soil | Specialized habitat. Low
dispersal capability. Relatively
small clutch size. Pesticides or
fertilizers can affect salamanders
and their food supply | Distribution and abundance.
Reproduction and nesting
ecology. Location of southern
edge of species range | Avoid disturbance of talus habitats (which can cause local extinctions); consider effects of potential ground-disturbing activities. Avoid use of pesticides adjacent to talus | | Northern leopard frog
(<i>Rana pipiens</i>) | NBR | Wet meadows, potholes, and riparian areas with high vegetative cover. Ponds and slow streams for hibernation | Predation by invasive bullfrogs.
Habitat loss particularly at edge
of range | Current distribution. Population
trends. Habitat requirements.
Effects of contaminants
(pesticides, herbicides) on
populations | Control bullfrogs at known nesting areas | | C | [| Consist on sale | Limitin of a stance | D-4 | G | |--|--------------------|---|---|---|---| | Species Northern red-legged frog (Rana aurora) | Ecoregion(s) KM WV | Special needs Ponds and wetlands with shallow areas and emergent plants. Access to forested habitats (forested wetland, upland) | Limiting factors Loss of egg-laying habitat. Predation and competition by invasive fish and bullfrogs | Data gaps Identify overwintering habitat. Clarify impacts of pollutants, ultraviolet radiation and parasites on populations. | Conservation actions Maintain wetland habitat with emergent plants. Maintain adjacent forested habitats. Control bullfrogs and invasive fish at key sites | | Oregon slender
salamander
(<i>Batrachoceps</i>
wrightorum) | WC | Late successional and second-
growth forest where there are
abundant mid to advanced decay
stage, large diameter Douglas fir
logs and bark debris mounds at
the base of snags. Talus and lava
fields that retain moisture. Can
clump together in groups to
remain damp. | Endemic to Cascade Mountains of Oregon. Restricted distribution; vulnerable to random events. Columbia River limits dispersal. Require habitat complexity characteristic of oldgrowth and unmanaged younger forests. High site fidelity for reproduction. | Maternal care, and life history.
Habitat requirements. Effects of
habitat fragmentation on
genetics. Improved survey
methods | Maintain habitat with late successional attributes suitable for this species. | | Oregon spotted frog
(Rana pretiosa) | EC
WC | Permanent ponds, marshes and
meandering streams through meadows for breeding and foraging, especially with shallow water and a bottom layer of dead and decaying vegetation. Springs and other sites with low, continuous water flow for overwintering | Slow to reach reproductive maturity. High fidelity to egglaying sites. Predation and competition by invasive fish and bullfrogs. Siltation. Some populations are isolated and vulnerable to inbreeding and extinction. Livestock grazing removes cover along stream edges and allows sediment and excessive aquatic vegetation to decrease habitat value. | Impacts of invasive fish and
bullfrogs. Documentation of
historic sites, and current range
status. Feasibility studies on
reintroduction at historic sites. | Maintain vegetation buffers around known populations; control bullfrogs and invasive fish at priority sites. Carefully manage livestock grazing at occupied montane wet meadows. Install small predator exclosures over parts of isolated breeding sites. Use results of feasibility studies to guide specific conservation actions and management decisions for reintroductions. | ## **Headwater Amphibians** Often secluded high in Oregon's mountains, headwater streams provide naturally outstanding water and habitat quality. In these often cool stream ecosystems, amphibians are cornerstone as both predators and prey. Several of Oregon's amphibians are specially adapted to life in the headwaters: Pacific giant salamanders, southern torrent salamanders, Columbia torrent salamanders, and the unique tailed frog. All prefer large amounts of large, rocky substrate in the streams, with a substantial forest buffer nearby. Tailed frogs, recently separated into two separate species (the coastal tailed frog in the mountains of western Oregon and the inland tailed frog in northeastern Oregon), are a true evolutionary relic. Unlike any other living frog, males have a protruding 'tail' that is used for reproduction. Tadpoles have oral discs designed for sucking diatoms (microscopic algae) from rocks and boulders. Females usually produce about 50 eggs per breeding season, and larvae spend at least a year in the water before they metamorphose. At higher elevations, larvae can spend up to four years in the water and may require five to six additional years before they are sexually mature. These unique traits slow the reproductive rate and can make tailed frogs vulnerable to habitat changes. Photos © Brome McCreary (Amphibians Cont.) | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|-----------------------------------|---|---|--|---| | Siskiyou Mountain
salamander (<i>Plethodon</i>
<i>stormi</i>) | KM | Restricted range to forests in Applegate drainage. Require talus deposits or rock outcrops. | Lungless salamanders breathe directly through skin so highly vulnerable to moisture loss. Highly sensitive to disturbance of talus microhabitat or forest overstory. | Genetic and taxonomic relationships to other members of the same genus. | High priority for conservation because of close dependence on forest characteristics, but occur outside existing reserve system. Within known range, ensure that land use practices retain essential characteristics of talus microhabitat. | | Southern torrent salamander (Rhyacotriton variegatus) | CR
KM | Cold mountain streams, spring heads and seeps. Require loose gravel stream beds with specific geologic characteristics. Specific requirements for stream gradients. | Limited dispersal. Adults are highly sensitive to drying. Larvae sensitive to changes in stream flow. | Distribution. Response to management activities at varied scales | Maintain stream buffers to
maintain cool water
temperatures and water clarity.
Minimize disturbance at known
suitable sites. | | Western toad (Bufo boreas) | BM
CR
EC
KM
NBR
WC | Wetlands, ponds and lakes for breeding. Extensive, sunny shallows with short, sparse or no vegetation for egg laying and for tadpole schools to move widely as they forage on organic mud and surface diatoms | Loss of breeding habitat due to changes in water level management. Egg-destroying pathogen (<i>Saprolegnia ferax</i>). Siltation. Roadkill adjacent to major breeding sites. Recreational impacts at certain sites. | Status and distribution. Impacts of <i>S. ferrax</i> and role of introduced fish in fungal spread. Causes of decline (e.g., role of ultraviolet radiation and global climate change). Survey to determine incidence of Chytrid skin fungus (<i>Batrachochytrium dendrobatidis</i>) | Maintain water levels and vegetation buffers at major breeding sites. Install culverts or drift fences at problem road crossings near major breeding sites. Inform recreationalists about the importance of minimizing shoreline impacts. Periodic control of vegetation height and density at occupied sites where these factors could interfere with breeding | # Yellow-legged Frogs Sporting a striking golden hue on its legs and belly, the foothill yellow-legged frog (Rana boylii) is particularly dependent on healthy rivers and streams. The adults often live in streamside vegetation, jumping into the water to escape danger. Females lay eggs during late March-June, usually at coarse-substrate bars or bedrock potholes where there is low velocity laminar flow. Young larvae occupy low-flow backwaters and feed on diatoms. Recent surveys of known historic yellow-legged frog sites in Oregon indicated that they may no longer exist at 51 of 90 historic localities, a 57 percent decline in known sites. Of 14 historic sites in the Willamette Valley, there is currently only one remaining known population of yellow-legged frogs. Historic sites have been altered by inundation by reservoirs, impacts from surrounding land use, and sedimentation that lowers water quality and covers coarse cobble substrates. Changes in hydrology due to water-control structures may have reduced availability of gravel bars and low-flow "nursery" areas. In addition, colonization by exotic plant species has reduced suitability of gravel bars for oviposition (egg-laying). At the northern-most edge of its range, it may be more sensitive to habitat changes in the Willamette Valley. The remaining population at the South Santiam River site appears to be small but successful, and reproduction has been documented. Conservation actions are needed immediately to ensure the continued existence of this species in the Willamette Valley. | Oregon | |---| | Oregon Conservation Strategy, February 2006 | | Abert Lake tui chub (Oregon Lakes tui chub (Sighateles sp. [cf. S. obesus]) Alvord chub (Gila avordensis) Borax Lake chub (Gila avordensis) Borax Lake chub (Gila boraxobius) Borax Lake chub (Gila avordensis) NBR Restricted to Borax Lake, a unique habitat fed by geothermal springe, located on fragile salt deposits. COFWN Native Fish Conservation Assessment pending: ODFW surveys plan in draft ODFW Native Fish Conservation Assessment pending (2005); USFWS recovery plan in draft Catlow tui chub (Gila NBR Restricted to streams and impoundments in Alvord basin NBR Restricted to Borax Lake, a unique habitat fed by geothermal springs, located on fragile salt deposits. Relatively low fecundity and resilience Relatively low fecundity and resilience Relatively low fecundity and resilience Vullnerable to random or localized disturbance. Habitat has been affected by some past land management practices. Off road vehicles. Water withdrawals. Population abundance and productivity. Population abundance and productivity. Population genetics. Distribution availability. Reduce localized impacts where populations on become increasingly fragmente obscience increasingly fragmente obsciences. Water withdrawals. Population genetics. Distribution and life history, particularly in Malheur and Owyhee. Impacts of non-native brook trout. Continue ongoing monitoring of populations: and conservation effectiveness. Catlow tui chub (Gila NBR Restricted to streams draining Repairs cool temperatures for spawning and rearing. Requires watershed function. Requires cool temperatures for spawning and rearing. Requires cool temperatures for spawning and rearing. Requires cool temperatures for spawning and rearing. Requires on on-native brook trout. Continue ongoing monitoring of populations and conservation effectiveness. Catlow tui chub (Gila NBR Restricted to streams draining Riparian condition. Passage. Continue ongoing efforts to |
--| | streams, and impoundments in Alvord basin Borax Lake Chub (Gila boraxobius) NBR Restricted to Borax Lake, a unique habitat fed by geothermal springs, located on fragile salt deposits. Restricted to Borax Lake, a unique habitat fed by geothermal springs, located on fragile salt deposits. Conservation Assessment pending; ODFW Native Fish Conservation Assessment Population Segment [DPS]: Bull trout (Salvelinus Confluentus) ODFW Native Fish Conservation Assessment Population Segment [DPS]: BM Conservation Assessment Pending (2005); USFWS recovery plan in draft WC Catlow tui chub (Gila NBR Restricted to Borax Lake, a Unique habitat fed by geothermal springs, located on fragile salt deposits. Vulnerable to random or localized disturbance. Habitat has been affected by some past land management practices. Off road vehicles. Water withdrawals. Population abundance and productivity. Continue efforts to maintain productivity. Increased temperature or fine sediment. Barriers to migration. Alterations of hydrology and watershed function. | | Localized disturbance. Habitat has been affected by some past land management practices. Off road vehicles. Water withdrawals. Population segment [DPS]: BM Conservation Assessment pending (2005); USFWS recovery plan in draft VC WC WC Catlow tui chub (Gila NBR Restricted to streams draining NBR Restricted to streams draining Required to streams draining Repairs condition. Requires deposits. Iocalized disturbance. Habitat has been affected by some past land management practices. Off road vehicles. Water withdrawals. Population spanning and management practices. Off road vehicles. Water withdrawals. Population genetics. Distribution and life history, particularly in Malheur and Owyhee. Impacts of non-native brook trout. Continue ongoing monitoring of populations and conservation effectiveness. Population genetics. Distribution and life history, particularly in Malheur and Owyhee. Impacts of non-native brook trout. Continue ongoing monitoring of populations and conservation effectiveness. Population genetics. Distribution and life history, particularly in Malheur and Owyhee. Impacts of non-native brook trout. Continue ongoing monitoring of populations and conservation effectiveness. Population genetics. Distribution and life history, particularly in Malheur and Owyhee. Impacts of non-native brook trout. Continue ongoing monitoring of populations and conservation effectiveness. Population genetics. Distribution and life history, particularly in Malheur and Owyhee. Impacts of non-native brook trout. Continue ongoing restoration efforts involving landowners, tribes an appropriate propriation. Population genetics. Distribution and life history, particularly in Malheur and Owyhee. Impact of populations and conservation efforts involving landowners, tribes an appropriate propriate | | Conservation Assessment pending [2005]; USFWS recovery plan in draft Catlow tui chub (Gila Population Segment [DPS]: BM Segment [DPS]: BM Conservation Assessment pending [2005] WC WC Relation Segment [DPS]: BM Segment [DPS]: BM Sediment. Barriers to migration. Alterations of hydrology and watershed function. wate | | Catlow tui chub (<i>Gila</i> NBR Restricted to streams draining Riparian condition. Passage. Genetics. Population dynamics. Continue ongoing efforts to | | bicolor ssp.) westsideof Catlow Valley (Steens Mountain rim to Catlow) Mountain rim to Catlow) Water temperature protect headwaters and stream throughout distribution range. Support efforts to improve riparian condition on both pub and private lands. | (Fish Cont.) | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--|--|--|---|--| | Species Chinook salmon (Oncorhynchus tshawytscha) ODFW Native Fish Conservation Assessment pending [2005] | Ecoregion(s) Snake River ESU, spring/ summer run and fall runs: BM CP CR EC WC WV Lower Columbia River ESU, spring run and fall run: CR EC | Special needs Require streams with clean gravel, complex habitat and cool temperatures for spawning and rearing. Require access for anadromous migration. | Limiting factors Water quality. Alterations of hydrology and watershed function. Fish passage. Riparian condition. Marine survival. | Data gaps Continue ongoing monitoring of populations and conservation effectiveness. Especially in Blue Mountains: Abundance, distribution and productivity. | Conservation actions Maintain or restore aquatic and riparian habitat. Continue ongoing restoration efforts involving landowners, tribes and agency partners (NOAA, NMFS, ODFW, OWEB) | | | WC WV Upper Willamette ESU, spring run: CR WC WV Southern Oregon/ Northern California Coast ESU, fall run: CR KM WC | | | | | | Chum salmon (Oncorhynchus keta) (Pacific Coast ESU) (Columbia River ESU currently considered extinct; further survey work planned to determine status in Oregon) ODFW Native Fish Conservation Assessment pending [2005] | CR | Require stream gravel bars and side channels near tidewaters for spawning. Migrate to ocean soon after emergence. | Alterations of hydrology and watershed function. Fish passage. Marine survival. Loss of estuarine habitat. | Population dynamics. Population genetics. Distribution. | Maintain or restore aquatic, estuarine and riparian habitat. Continue ongoing restoration efforts involving landowners, tribes and agency partners (NOAA, NMFS, ODFW, OWEB) | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--|--|---|---|--| | Coastal cutthroat trout
(Oncorhynchus clarki)
ODFW Native Fish
Conservation Assessment
pending [2005] | Oregon Coast
ESU:
CR
KM
WC | Large woody debris, in-stream
structures and vegetation
important for protection while in
freshwater. Juveniles prefer side
channels, backwaters or pools for
rearing. Clean gravel for | Habitat fragmentation or actions that increase population isolation. Water quality. Alterations of hydrology and watershed function. Loss of estuarine
habitat for rearing. | Breeding and genetic
relationships among different life
history types. Abundance.
Distribution. Population age
composition, estimates and
trends | Maintain or restore aquatic,
estuarine and riparian habitat,
providing suitable water quality
and habitat complexity. Continue
ongoing restoration efforts
involving landowners, tribes and | | pending (2003) | | spawning and rearing. Migratory corridors. | Ocean productivity. | | agency partners (NOAA, NMFS,
ODFW, OWEB). Reduce localized
impacts where populations could
become increasingly fragmented. | | | Southern Oregon/ California Coasts ESU: CR KM | | | | | | | WC
Southwest
Washington/
Columbia River | | | | | | | ESU:
CR
EC
WC
WV | | | | | | | Upper Willamette
River ESU:
CR
WC
WV | | | | | | Coho salmon
(Oncorhnchus kisutch)
ODFW Native Fish
Conservation Assessment
pending [2005] | Oregon Coast
ESU [note: not
native above
Willamette Falls]:
CR
KM
WC | Require streams with clean gravel, complex habitat and cool temperatures for spawning and rearing. Require access for anadromous migration. | Stream complexity. Water quality.
Fish passage. Riparian condition.
Altered watershed processes.
Marine survival. | Consult SSRs, Coastal Coho
Assessment | Implement measures identified in
Coastal Coho Assessment with
landowners and agency partners
NOAA; NMFS; State of Oregon
(ODFW, OWEB, IMST); Coastal
Coho Stakeholder Team | | | Lower Columbia
River/SW
Washington
Coast ESU:
CP
CR
EC
WC | Require streams with clean gravel, complex habitat and cool temperatures for spawning and rearing. Require access for anadromous migration. | Water quality. Alterations of
hydrology and watershed
function. Fish passage. Riparian
condition. Marine survival. | Continue ongoing monitoring of populations and conservation effectiveness. | Maintain or restore aquatic and riparian habitat. Continue ongoing restoration efforts involving landowners, tribes and agency partners (NOAA, NMFS, ODFW, OWEB) | | | Washington
Coast ESU:
CP
CR
EC
WC | temperatures for spawning and rearing. Require access for | function. Fish passage. Riparian | | o
ir
a | (Fish Cont.) | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--|---|--|---|---| | | Southern
Oregon/
Northern
California Coasts
ESU:
CR
KM | | | | | | Foskett spring speckled dace (Rhinichthys osculus ssp) [ODFW Native Fish Conservation Assessment pending; ODFW surveys planned for 2005] | NBR | Restricted to lakes and low
gradient stream reaches of
Warner Valley | Vulnerable to random or
localized disturbance. Habitat
has been affected by some past
agricultural and forestry
practices. | Long-term habitat needs.
Genetics. Population dynamics. | Secure spring waters for habitat.
Maintain connectivity of habitats. | | Goose Lake lamprey
(Lampetra tridentata ssp.) | EC | Endemic to Goose Lake and its tributaries in Oregon and California. Adults live in shallow, alkaline Goose Lake where they prey on larger fishes; require gravel riffles in streams for spawning; larvae prefer muddy backwater habitats. | Relatively isolated species vulnerable to random events (e.g., drought, habitat loss through erosion). Passage upstream and downstream. Water quality | Distribution. Detailed taxonomy. Life history and habitat requirements (i.e., which streams most important for spawning. | Restore flow and passage for lamprey migration (i.e. Lassen, Willow, and Thomas creeks); benefits many species. Use species specific habitat requirements to direct actions. Continue collaborative workgroup efforts. Screening irrigation diversions (outmigrants) | | Goose Lake sucker
(Catostomus occidentalis
lacusanserinus) | EC | Limited to Goose Lk; appears to be locally abundant | Restricted distribution creates vulnerability to random events (e.g., reduced flow, increased temperature). Passage. | Distribution. Spawning habitat.
Population dynamics. | Continue to protect known populations. Alleviate reasons for decline (e.g., restore flow, continue to provide cooling and protection from habitat degradation). | | Goose Lake tui chub (Gila
bicolor thalassina) | EC | Limited to Goose Lake and
Warner Valley. Require habitat
with low flow, silty organic
substrate, abundant vegetation
and cover | Invasive fishes (predation and
competition). Fish passage.
Wetland drainage. Water quality.
Riparian condition. Water
temperature. Channelization. | Distribution. Population biology
and life history. Genetics.
Taxonomy. | Maintain water quality and availability. Reduce localized impacts where populations could become increasingly fragmented. Restore flow and fish passage. | | Green sturgeon
(Acipenser medirostris)
ODFW Native Fish
Conservation Assessment
pending [2005] | CR | Spawn over areas with large rocks in deep eddies or backflows | Relatively low population sizes. Affected by predation by other fish. Previous consumption by humans. Poor water quality. Dredging. | Life history and population
dynamics. Diet and migration.
Habitat requirements, particularly
of juveniles. Recreational impacts.
Anadromous in Oregon, but
more readily surveyed in
saltwater so freshwater status
difficult to determine. | Use species-specific habitat requirements to guide management actions. Recommend recreation opportunities that will minimize disturbance. | | Hutton tui chub (Gila bicolor ssp.) | NBR | Restricted to one spring in the Alkali Lake subbasin of the Chewaucan River. | Vulnerable to random or localized disturbance. Habitat has been affected by some | Population abundance and productivity. Long term habitat needs. | Secure spring waters. Maintain water quality. Maintain or restore migration corridors among | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|-----------------------|--|---|--|--| | [ODFW Native Fish
Conservation Assessment
pending; ODFW
population and habitat
surveys planned for
2005] | | | agricultural and forestry
practices. Located near an old
waste dump site, with toxins
beginning to infiltrate the water
table. | | habitats. Prevent infiltration of toxins into the spring water supply. | | Inland Columbia Basin redband trout (Oncorhynchus mykiss gairdneri) ODFW Native Fish Conservation Assessment pending [2005] | BM
CP
EC
NBR | Several life history types with
different migratory patterns.
Restricted distribution. Pools
provide important habitat for all
life stages. | Water temperature and flow. Channelization. Passage barriers blocking migratory corridors. Land use practices; siltation. Hybridization with introduced fish. | Population dynamics and genetics. Life history, distribution particularly in Owyhee and Catlow Valley. Reproductive isolation of SMUs. | Continue ongoing efforts to protect headwaters and streams throughout distribution, improve water quality and riparian condition. For example, create conservation population in Harvey Creek or elsewhere. Minimize contact with introduced fish that could lead to hybridization | | Jenny Creek sucker (=
Jenny Creek population
of Klamath smallscale
sucker) (Catostomus
rimiculus) | EC | Few offspring produced per
female; slow population doubling
time (4-14 years). Prefers pools
and runs of small to medium
rivers. | Isolated above a barrier so
vulnerable to habitat changes
and random events (e.g., reduced
flow, increased temperature) | Information on population dynamics. | Continue to conserve existing population. Alleviate reasons for decline (e.g., restore flow,
continue to provide cooling and protection from habitat degradation). | | Lahontan cutthroat trout (Oncorhynchus clarki henshawi) [ODFW assessment planned; USFWS recovery plan currently being implemented] | NBR | Restricted distribution. Found in small streams lacking numerous other fish species | Vulnerable to random
disturbance or events that cause
isolation. Potential hybridization
with rainbow trout. Reduced
flow diversions, irrigation,
passage barriers, channelization) | Genetics. Taxonomy. Population dynamics. | Continue ongoing recovery efforts to: monitor water availability, improve riparian condition and channel structure (implementation of current recovery plan). | | Lost River Sucker
(<i>Deltistes luxatus</i>) | EC | Limited to in Upper Klamath. Spawn in rivers, streams, or springs associated with lake habitats in gravel or cobble substrate. Spawning and juvenile rearing on shoreline river and lake habitats with vegetative structure. | Limited distribution so vulnerable to random events (habitat loss, passage and flow barriers). Susceptible to predation or competition with invasive fish. Water quality. Typically do not spawn very year, even though they can live to be 45 years old. | Influences on fish reproductive
behavior; for example, why fish
do not spawn every year | Continue to provide for high quality water, reduce the impacts of invasive fishes, improve migration corridors between habitats and populations. Improve historical spawning locations. Improve riparian and stream function on Sprague and Lost Rivers | | Malheur mottled sculpin
(Cottus bendirei) | BM
NBR | Juveniles prefer cool pools in
slower-moving streams for
rearing. Adults prefer deeper,
faster flowing water. | Restricted distribution. Affected
by increased temperature.
Localized disturbance can impact
interconnected populations. | Population biology and estimates.
Habitat use. Interactions with
other species | Maintain riparian cover and other factors that can provide thermal cooling. Reduce localized impacts where populations could become increasingly fragmented. | | Margined sculpin (Cottus marginatus) | BM
CP | Prefers cool pools in slower-
moving streams. Adults can
prefer deeper, faster flowing
water. | Increased temperature. Localized disturbance can impact interconnected populations. | Information about interactions with other species | Maintain riparian cover to provide thermal cooling. Reduce localized impacts to avoid fragmenting populations. | | Miller Lake lamprey
(<i>Lampetra minima</i>) | EC | Spawn in lakes; also inhabit
marshes or rivers. Adults are
smaller than late-stage larvae, | Altered hydrology and flow
regime. High mortality and
concentration of eggs in small | Lamprey taxonomy. Species-
specific habitat requirements. | Implement conservation plan
adopted by ODFW in summer
2005, Also: increased | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|---|--|---|---|--| | ODFW Conservation Plan
adopted summer 2005 | | possibly because of difficulty finding food, yet still can spawn. Adults parasitic; potential role of reducing egg predators. | area. | | understanding of biology will
help in identifying habitat
requirements and potential
conservation actions. Remove
barrier on Miller Creek. | | Millicoma dace
(Rhinichthys cataractae
ssp) | CR | Cool swift streams; cobbles and gravel for rearing and spawning. Use beaver ponds as rearing habitat. | Lack of cobble or gravel habitat. Limited distribution Altered flow regimes (because of culverts, channelization). Altered sediment regimes, including changes in timing of input and ratio of particle size. | Species-specific habitat requirements | Create and maintain gravel habitats. Maintain or restore flow and sediment regimes to improve habitat quality. Maintain or improve riparian conditions, including habitat for beavers. | | Modoc sucker
(Catostomus microps) | EC | Limited to Goose Lake Basin;
Thomas Creek. Requires pools
and cover for spawning habitat. | Relatively isolated species vulnerable to random events (habitat loss, barriers, water diversions). | Distribution. Population biology | Continue to protect and monitor existing populations. Establish additional populations. Improve fish passage and screening Improve irrigation efficiency to allow for more flow in Thomas Creek. Improve riparian habitat | | Oregon Basins redband
trout (Oncorhynchus
mykiss) ODFW Native Fish
Conservation Assessment
pending [2005] | Silvies River:
BM
Goose Lake SMU:
EC
Catlow Valley SMU;
Foster Creek;
Warner Valley SMU:
NBR | Several life history types with
different migratory patterns.
Pools provide important habitat
for all life stages. | Water temperature. Channelization. Water withdrawal. Riparian condition. Passage barriers. In some locations, hybridization with introduced fish | Life history. Distribution. Effects of barriers to fish passage. Potential effectiveness of reintroductions at selected sites. Methods to increase water availability during summer months. | Restore flow and riparian quality. Maintain channel complexity and pool quality. Minimize contact with introduced fish that could lead to hybridization. Implement screens and passage at critical areas. Where possible, provide passage for a longer period of time and screen high priority diversions. Pursue efforts to improve water quantity and quality. | | Oregon chub (Oregonichthys crameri) [recovery plan currently being implemented] ODFW Native Fish Conservation Assessment pending [2005] | WC
WV | Off-channel habitat (low flow, silty organic substrate, abundant vegetation and cover) | Predation by and competition
with invasive species; passage
barriers; channelization; nonpoint
source pollution; drainage of key
off-channel habitat; culvert
cleaning | Impacts of non-native species | Implement invasive species removal programs; remove passage barriers or mitigate for effects; reduce pollution, restore flow; re-introductions may be appropriate at some sites. Implement actions recommended in current Recovery Plan. | | Pacific lamprey (Lampetra tridentate) ODFW Native Fish Conservation Assessment pending [2005] | BM
CP
CR
EC
KM
WC
WV | May aggregate in high densities. Requires fine gravel beds for spawning. Larvae burrow in fine sediment. Timing of development closely linked to water temperature | Reduced water quality. Passage
barriers. Altered flow patterns.
Dredging. Rapid water draw-
downs. Marine survival. | Status; population delineation; limiting factor analysis (includes passage); restoration actions; biology; population dynamics (prioritized by Lamprey Workgroup in 2005). | Improve passage. Alter timing of water draw-down. Use species-specific habitat requirements to guide management actions. See results of Lamprey Workgroup 2005 for strategies. | | Pit-Klamath brook
lamprey (<i>Lampetra</i>
<i>lethophaga</i>) | EC | Limited to upper Klamath Basin;
Goose Lake Basin. Nonparasitic;
inhabits riffles and runs of clear
streams; juveniles rear near weed
beds and sand bars. | Low minimum population
doubling time; low fecundity.
Fish passage. Drought and
summer flows. Water quality. | Population biology; population genetics. Detailed taxonomy. Determine whether reproductively isolated from other lamprey. | Protect known populations; use species-specific habitat requirements to direct actions. Improve fish passage | | Oregon | | |-----------------------------|--| | Conservati | | | วท Conservation Strategy, I | | | =ebruary | | | 2006 | | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--|--|--|--
--| | Sheldon tui chub (<i>Gila</i> bicolor eutysoma) | NBR | Endemic restricted to Guano and
Catlow valleys | Vulnerable to random or localized disturbance. | Genetics. Population dynamics.
Habitat use. | Maintain water quality and
availability. Reduce localized
impacts where populations could
become increasingly fragmented. | | Shortnose sucker
(Chasmistes brevirostris) | EC | Limited to Upper Klamath. Spawn in rivers, streams, or springs associated with lake habitats; after hatching migrate to lakes; need shoreline river and lake habitats with vegetative structure during larval and juvenile rearing | Limited distribution so vulnerable to random events (barriers, diversions, habitat loss). Susceptible to predation or competition with invasive fish. Water quality. | Juvenile habitat requirements and limiting factors to juveniles | Improve migration corridors. Note that Gerber Reservoir represents the only habitat with a shortnose sucker population that does not also have a Lost River sucker population. Improve water quality and spawning habitat. | | Slender sculpin (Cottus tenuis) | EC | Distribution restricted to tributaries of Upper Klamath Lake | Possibly susceptible to parasites;
unknown consequences for
populations. Water quality. | Life history. Habitat requirements. | Design specific management actions based on species specific requirements. High priority for conservation. | | Steelhead (Oncorhynchus mykiss) ODFW Native Fish Conservation Assessment pending [2005] | Middle Columbia River ESU, summer run and winter run: BM CP CR EC WV WC Snake River Basin ESU: BM CP CR EC WC WV Lower Columbia River ESU, summer run and winter run: CR EC WC WV Oregon Coast ESU, summer run and winter run: CR KM WC WV | Require streams with clean gravel, complex habitat and cool temperatures for spawning and rearing. Require access for anadromous migration. | Water quality. Alterations of hydrology and watershed function. Fish passage. Riparian condition. Marine survival. | Continue ongoing monitoring of populations and conservation effectiveness. | Maintain or restore aquatic and riparian habitat. Continue ongoing restoration efforts involving landowners, tribes and agency partners (NOAA, NMFS, ODFW, OWEB) | (Fish Cont.) | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--|---|---|---|--| | Steelhead (cont.) | Southwest Washington ESU, winter run: CR WV Upper Willamette River ESU, winter run: CR WC KM | | NAC A LONG TO THE STATE OF | | | | | Klamath
Mountains
Province ESU,
summer run and
winter run:
CR
KM
WC | Require streams with clean
gravel, complex habitat and cool
temperatures for spawning and
rearing. Require access for
anadromous migration.
Highly diverse genetics and life
history patterns | Water quality. Alterations of
hydrology and watershed
function. Fish passage. Riparian
condition. Marine survival.
Resource extraction. | Continue ongoing monitoring of populations and conservation effectiveness. Interactions among populations and sub-populations. | Maintain or restore aquatic and riparian habitat. Continue ongoing restoration efforts involving landowners, tribes and agency partners (NOAA, NMFS, ODFW, OWEB) | | Summer Basin tui chub
(Gila bicolor ssp.) | NBR | Endemic to Summer Lake | Vulnerable to random or localized disturbance. Riparian condition. Water temperature | Genetics. Taxonomy. Distribution in Ana River. | Maintain water quality and availability. Reduce localized impacts where populations could become increasingly fragmented. | | Umpqua chub (Oregonichthys kalawatseti) ODFW Native Fish Conservation Assessment pending [2005] | CR
KM
WC | Off-channel habitat (low flow, silty organic substrate, abundant vegetation and cover). | Restricted distribution (to
Umpqua basin). Passage barriers.
Channelization. Wetland
drainage. Nonpoint source
pollution. Culvert cleaning.
Invasive species (predation) | Population dynamics. Abundance estimates and trends. | Reduce pollution. Restore flow.
Reduce density of invasives in key
habitat. Re-introductions useful
at some sites. Limit nonpoint
source pollution through TMDL
process | | Warner sucker
(Catostomus warnerensis) | NBR | Lakes and low gradient stream reaches of Warner Valley. | Invasive species. Forest and agricultural practices. Road construction. Irrigation structures impede passage. Water withdrawal. Minimum flows. | Genetics. Long term habitat
needs for self sustaining
populations. Spawning habitat. | Maintain or restore spring waters. Maintain or restore migration corridors among habitats. | | Warner Basin tui chub
(Catostomus warnerensis) | NBR | Endemic to Warner Valley
streams and lakes. | Vulnerable to random or localized disturbance. Lack of connectivity of habitat. Riparian condition. Water temperature. Invasive predators (crappie, brown bullhead) | Genetics. Taxonomy. | Maintain water quality and availability. Reduce localized impacts where populations could become increasingly fragmented. Maintain habitat connectivity. | | Western brook lamprey
(Lampetra richardsoni)
ODFW Native Fish
Conservation Assessment
pending [2005] | BM
CP
CR
EC
KM
WC
WV | May aggregate in high densities.
Requires fine gravel beds for
spawning. Larvae burrow in fine
sediment. Timing of
development closely linked to
water temperature | Reduced water quality. Passage
barriers. Altered flow patterns.
Dredging. Rapid water draw-
downs. Marine survival. | Status; population delineation;
limiting factor analysis (includes
passage); restoration actions;
biology; population dynamics
(prioritized by Lamprey
Workgroup in 2005). | Improve passage. Alter timing of water draw-down. Use species-specific habitat requirements to guide management actions. See results of Lamprey Workgroup 2005 for strategies. | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|--|---|--|--| | Westslope cutthroat trout
(Oncorhychus clarki
lewisi) | вм | Specializes in foraging for invertebrates. Prefers cool, clear streams with coarse sediment. | Land use practices that reduce
riparian cover; passage barriers;
invasive
species that can compete
over food resources | Effects of habitat fragmentation | Maintain riparian cover and other factors that can provide thermal cooling. Reduce localized impacts where populations could become increasingly fragmented. | | Upper Klamath Lake
lamprey (Lampetra
tridentata ssp.) | EC | Found only in Klamath Lake. May aggregate in high densities. Requires small gravel beds for spawning. Larvae burrow in fine sediment. Timing of development closely linked to water temperature. | Restricted distribution. Altered hydrology and flow regime. Water quality. | Lamprey taxonomy. Life history.
Species habitat requirements. | Restore and maintain flow and water quality. Acquire more information with biological surveys. | #### Lamprey Lamprey are vital symbols to Native American cultures, challenges to conservation, and fascinating evolutionary relics. Two relatively widespread species of lamprey are found in Oregon – Pacific lamprey and western brook lamprey. Simi- lar to salmon, the Pacific lamprey migrates between rivers and streams (as young) and the ocean (as adults), returning to streams to breed and die. Pacific lamprey larvae spend up to six years buried in silt and sand before they migrate to the ocean. Like salmon, Pacific lamprey link nutrient and organic matter between the oceans and rivers. In both habitats, they provide food for a broad array of wildlife and other fish. Pacific lamprey typically are found in large river systems, such as the Columbia and Klamath, and often parasitize other fish. In contrast, western brook lamprey are not parasitic and do not migrate to the ocean to feed. Western brook lamprey are more common in smaller tributaries or river systems such as the Alsea River, and are very rare in the Columbia River above the Bonneville Dam. Western brook lamprey do not migrate very long distances and tend to have smaller and more isolated populations. They are thought to be very sensitive to pollution and habitat disturbance. Both species belong to an ancient group of fishes, which are specialized scavengers and parasites lacking jaws. In the early 1990's, tribal fisheries managers, state agencies and other researchers began to notice an apparent decline in numbers of several lamprey populations. In particular, lamprey appear to be declining in the Upper Columbia, Snake River and Umpqua Rivers in Oregon. Lamprey have long been a part of Native American culture, viewed as a source of food and medicine as well as a powerful symbol. However, other fisheries managers have been slower to recognize the conservation needs of lamprey. Currently, state agencies are investing in several large-scale studies of lamprey, and several interested groups have requested that the USFWS consider listing lamprey. Conservation actions that benefit lamprey could therefore have dramatic impact on the future of these unique species. | Ecoregion(s) | Special needs | Limiting Factors | Data gaps | Conservation actions | |--------------|---|---|---|--| | WV | Wet prairies, especially dominated by tufted hairgrass | Loss of wet prairie habitat | Undetermined | Maintain or restore wet prairie habitat | | WC | Small streams in Columbia Gorge | Narrow distribution (endemic);
extremely isolated | Species-specific habitat requirements. | Maintain stream water quality and sediment regimes. | | WC | Small streams in Columbia Gorge | Narrow distribution (endemic);
extremely isolated | Species-specific habitat requirements. | Maintain stream water quality and sediment regimes. | | WV | Seasonally wet native prairies;
requires Kincaid's lupine as a host
plant. | Habitat loss, habitat degradation due to invasive plants | Undetermined | Maintain and restore wet prairie habitat and populations of Kincaid's lupine; use caution when implementing gypsy moth control in nearby forests | | CR | Cool, clear streams with coarse sediment and little silt | Undetermined | Species-specific habitat requirements. | Maintain stream water quality and sediment regimes. | | CR | Coastal bluffs | Narrow distribution (subspecies is
endemic); habitat loss due to
development; habitat
degradation due to fire
suppression; invasive plants | Life history. | Protect known sites of occurrence. Restore coastal bluff grasslands. | | CR | Wet, open habitats (bogs,
meadows, ditches); uses coastal
salt-spray meadows; uses clover
as a host plant; conifer trees
adjacent to meadows serve as
windbreaks | Habitat loss due to development;
habitat degradation due to fire
suppression; invasive plants | Undetermined | Protect known sites of occurrence. Restore meadow habitats. | | KM
WC | Mature and old-growth coniferous forest; caterpillar food plant is conifer mistletoe, a parasitic plant that grows on western hemlock and on mountain hemlock in the KM | Habitat loss. Patchy occurrence of
caterpillar food plant. Poor
dispersal so vulnerable to
fragmentation | Population distribution (often
overlooked due to occurrence
high in tree canopies) | Maintain habitat patches where existing populations occur | | NBR | Malheur Cave is a thermal lava tube cave that contains the largest array of cave adapted species in the Pacific Northwest. Contains geothermal lake which regulates climate within the cave (making it warmer than outside surface temperature). Species have adapted to moist, warm environment and also require wood and other materials for substrate. Small mammals and bats bring this material into the cave. | Endemic; vulnerable to random or localized disturbance. Potential disturbance from pesticide drift, water diversion, or visitor disturbance. | Undetermined. | Continue to maintain suitable habitat, especially water quality. Manage recreation to minimize impacts to endemic species. | | | WC WC WC CR CR CR KM WC | WC Small streams in Columbia Gorge WC Small streams in Columbia Gorge WV Seasonally wet native prairies; requires Kincaid's lupine as a host plant. CR Cool, clear streams with coarse sediment and little silt CR Coastal bluffs KM Mature and old-growth conifer trees adjacent to meadows serve as windbreaks KM Mature and old-growth conifer mistletoe, a parasitic plant that grows on western hemlock and on mountain hemlock in the KM NBR Malheur Cave is a thermal lava tube cave that contains the largest array of cave adapted species in the Pacific Northwest. Contains geothermal lake which regulates climate within the cave (making it warmer than outside surface temperature). Species have adapted to moist, warm environment and also require wood and other materials for substrate. Small mammals and bats bring this material into the | WC Small streams in Columbia Gorge WC Small streams in Columbia Gorge WC Small streams in Columbia Gorge WC Seasonally wet native prairies; requires Kincaid's lupine as a host plant. CR Cool, clear streams with coarse sediment and little silt CR Coastal bluffs Wet, open habitats (bogs, meadows, ditches); uses coastal salt-spray meadows; uses clover as a host plant; conifer trees adjacent to meadows serve as windbreaks KM Mature and old-growth coniferous forest; caterpillar food plant is conifer mistletoe, a parasitic plant that grows on western hemlock and on mountain hemlock in the KM NBR Malheur Cave is a thermal lava tube cave that contains the largest array of cave adapted syecies in the Pacific Northwest. Contains geothermal lake which regulates climate within the cave (making it warmer than outside surface temperature). Species have adapted
to moist, warm environment and also require wood and other materials for substrate. Small mammals and bats bring this material into the | Wet prairies, especially dominated by tufted hairgrass Loss of wet prairie habitat Undetermined | | Species | Ecoregion(s) | Special needs | Limiting Factors | Data gaps | Conservation actions | |---|--------------|---|---|---|---| | Mardon skipper
(butterfly) (<i>Polites</i>
<i>mardon</i>) | KM | Meadow habitats; larvae feed on native fescue (grass) | Naturally rare with disjunct populations; loss of grassland habitats; invasive plants | Effects of invasive plant control on populations; distribution | Maintain and restore meadow habitats | | Oregon cave amphipod
(Stygobromus
oregonensis) | KM | Aquatic habitat in underground cave | Limited distribution (endemic) | Undetermined | Maintain suitable habitat characteristics at known site; maintain water quality and quantity | | Oregon silverspot
butterfly (<i>Speyeria zerene</i>
<i>hippolyta</i>) | CR | Salt-spray meadows; depends on
2 species of violet as host plant
(early blue and western blue
violets); spruce trees adjacent to
meadows serve as shelter and
windbreaks | Habitat loss due to development.
Recreation. Fire suppression that
allows grass to overshadow early
blue violets | Management techniques for violet host plants | Continue to implement actions identified in recovery plan. Protect known sites, with longterm management to maintain suitable habitat characteristics and monitoring. | | Roth's blind ground
beetle (<i>Pterostichus rothi</i>) | CR | Cool, moist, closed-canopy
conifer forests with deep, well-
drained soils; soil-dweller, but
requires coarse woody debris for
shelter | May be sensitive to changes in canopy cover and microclimate at forest floor | Response to fire and timber harvest, especially in relation to seasonal habitat use | Maintain canopy cover and coarse woody debris at known sites | | Scott's apatanian
caddisfly (<i>Allomyia scotti</i>) | WC | Cold, high-elevation streams (>4,000 ft); larvae found on vertical rock faces in flowing water or on rocks in turbulent water; larvae scrape the upper surfaces of rocks to build cases from small rock fragments | Disturbances that affect flowing water in suitable rocky habitats | Information on distribution and population dynamics | Maintain freshwater habitat with sufficient algae and detritus | | Siskiyou short-horned
grasshopper (<i>Chloealtis</i>
<i>aspasma</i>) | KM | Grassland areas near wooded or brushy areas | Localized disturbance. Habitat fragmentation. | Undetermined. | Maintain or restore habitat within known range. Continue to provide connections between populations | # Great Arctic (Butterfly) The number of butterfly species tends to increase as you travel south across North America, and butterflies have the greatest diversity in the tropics. Because they are dependent on sunshine for body warmth and flowers for nectar, butterflies are particularly suited to warm climates. However, Oregon has an interesting variety of butterflies. Oregon's butterflies cope with Oregon's cool winters by overwintering as eggs, larvae or adults (except for the monarch, which migrates to Mexico for the winter). The great arctic is an unusual butterfly because it is adapted to the short growing seasons of high mountains. The great arctic is a large, tawny butterfly with dark eyespots on its forewings. The female great arctic lays her eggs on native grasses. The larvae hatch from the eggs and feed upon the grass blades. Unlike most butterfly larvae, which mature and metamorphose into adults during one summer, the great arctic larvae require two full summers to mature. The larvae overwinter twice before metamorphosing into adults to mate. As a result, the adults only fly every other year. In most areas, adults can be seen during even-numbered years. Maintaining open montane grasslands and wildflower meadows benefits the great arctic and many other butterflies. Photo © Bruce Newhouse (Invertebrates Cont.) | Species | Ecoregion(s) | Special needs | Limiting Factors | Data gaps | Conservation actions | |--|--------------|---|---|---|---| | Taylor's checkerspot
(butterfly) (<i>Euphydryas</i>
<i>editha taylori</i>) | WV | Low-elevation upland prairies;
currently using the non-native
narrow-leaved plantain as a host
plant. | Habitat loss, habitat degradation
due to invasive plants and lack of
fire | Historic native host plant | Maintain grassland habitats,
increase plant diversity for nectar
plants, control key invasive non-
native plants | | Vernal pool fairy shrimp
(Branchinecta lynchi) | KM | Ephemeral pools; prefers smaller,
cooler pools. Females leave eggs
that dry out along with the pool
until re-filling ("cysts") | Little genetic variability within populations. Remaining pool habitats increasingly isolated. Draining vernal pools. Modified hydrology. Stormwater run-off containing pesticides, chemical residues and other contaminants | Genetics. Mechanics of cyst dispersal. | Maintain or restore vernal pools to provide habitat. Maintain or restore water quality in vernal pool habitat. | | Wahkeena Falls flightless
stonefly (<i>Zapada</i>
wahkeena) | WC | Larva are aquatic; adults use riparian vegetation adjacent to falls | Narrow distribution (endemic to
Wahkeena Falls) | Undetermined | Maintain water quality at known location | | Terrestrial mollusks: | | | | | | | Chace sideband
(Monadenia chaceana) | WC | Shrubby or shaded areas in rocky habitat, talus deposits and associated riparian areas; or associated with woody debris | Habitat disturbance that reduces coarse woody debris, shading or other refuge | Understanding of habitat requirements; population dynamics | Maintain sufficient levels of woody debris or shrub shading | | Columbia Gorge hesperian
(Vespericola depressus);
and Oregon snail (Dalles
sideband) (Monadenia
fidelis minor) | СР | Prefer talus or basalt habitat with
minimal vegetation cover. In dry
open basalt talus, often
associated with seeps and
springs; lower elevations | Restricted distribution (endemic
to Lower Deschutes and/or
Columbia Gorge); habitat loss
due to development and road
construction; roadside spraying
Vulnerable to isolation or
fragmentation of populations. | Distribution, specific habitat use | Maintain appropriate habitats;
minimize impacts from talus
mining at known populations | | Dalles mountainsnail
(Oreohelix variabilis
variabilis) | СР | Prefer talus or basalt habitat with minimal vegetation cover. | Restricted distribution (endemic
to Lower Deschutes and/or
Columbia Gorge); habitat loss
due to development and road
construction; roadside spraying
Vulnerable to isolation or
fragmentation of populations. | Distribution, specific habitat use | Maintain appropriate habitats;
minimize impacts from talus
mining at known populations | | Evening fieldslug
(Deroceras hesperium) | EC | Mature closed-canopy forests
(although may use moist second-
growth forests); associated with
gullies, draws, seeps, and springs;
uses wood and rocks for cover | Undetermined | Association with second-growth forests; effects of forest management; limiting factors | Maintain canopy cover, moist microclimates, and woody debris at known sites | | Green sideband
(Monadenia fidelis
beryllica) | CR
KM | In deciduous trees and brush in wet, relatively undisturbed forests at low elevations | Most have restricted distributions; other limiting factors poorly understood. Disturbance to microhabitats, especially talus and moist microclimates. | Distribution and population
ecology. Species-specific habitat
requirements and limiting factors | Protect and maintain known sites
of occurrence. Investigate
species-specific habitat
requirements and use these to
guide management actions | | Montane peaclam
(<i>Pisodium</i>
<i>ultramontanum</i>) | EC | Spring-influenced streams, lakes,
or ponds; prefers sand/gravel
substrates | Restricted distribution (endemic);
sedimentation and nutrient input
from land use practices; spring
alteration and decreased flow | Undetermined | Maintain and restore appropriate water flow and quality. Prevent or mitigate for water diversions, dredging, or other activities that could increase sediment or nutrient levels. | | Species | Ecoregion(s) | Special needs |
Limiting Factors | Data gaps | Conservation actions | |--|--------------|--|--|---|--| | Oregon shoulderband
(Helminthoglypta
hertleini) | KM
WC | Rocky areas including talus
deposits. Requires permanent
ground cover or moisture,
including: talus, rock fissures, or
woody debris. | Limited distribution; Disturbance
to microhabitats, i.e. talus.
Disturbance that reduces coarse
woody debris, shading or other
refuge. | Understanding of habitat
requirements; population
dynamics | Maintain sufficient levels of
woody debris or shrub shading
Maintain suitable habitat
conditions at known sites | | Pacific walker
(Pomatiopsis californica) | CR | Semiaquatic; among wet vegetation along water | Restricted distributions. Other limiting factors poorly understood | Habitat requirements and limiting factors | Protect known sites of occurrence. Investigate habitat requirements and use these to guide management actions | | Salamander slug
(Gliabates oregonius) | CR | Mature coniferous forests | Restricted distributions. Other limiting factors poorly understood | Habitat requirements and limiting factors | Protect known sites of occurrence. Investigate habitat requirements and use these to guide management actions | | Sister's hesperian
(Hochbergellus hirsutus) | CR | Undetermined | Restricted distributions. Other limiting factors poorly understood | Habitat requirements and limiting factors | Protect known sites of occurrence. Investigate habitat requirements and use these to guide management actions | | Spotted taildropper
(Prophysaon vanattae
pardalis) | CR | Moist, mature forested habitat or forests in the coastal "fog" zone | Restricted distributions. Other limiting factors poorly understood | Habitat requirements and limiting factors | Protect known sites of occurrence. Investigate habitat requirements and use these to guide management actions | | Tillamook westernslug
(Hesperarion mariae) | CR | Sitka spruce forest | Restricted distributions. Other limiting factors poorly understood | Habitat requirements and limiting factors | Protect known sites of occurrence. Investigate habitat requirements and use these to guide management actions | | Traveling sideband
(Monadenia fidelis
celeuthia) | KM
WC | Dry, open forests at low elevations | Habitat disturbance that reduces coarse woody debris, shading or other refuge. Limited distribution; disturbance to microhabitats, especially talus and moist microclimates | Understanding of habitat requirements; distribution and population dynamics | Maintain sufficient levels of
woody debris or shrub shading.
Maintain suitable habitat
conditions at known sites | | Aquatic mollusks: | | | | | | | Archimedes springsnail
(Pygulopsis archimedis) | EC | Spring-influenced areas of large lakes | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Borax Lake ramshorn
(Planoorbella
oregonensis) | NBR | Found only in Borax Lake | Endemic; vulnerable to random or localized disturbance. | Undetermined | Continue to protect known sites of occurrence. | | Bulb juga (Juga bulbosa) | BM
CP | Cold, highly oxygenated water;
found in gravel-boulder riffles | Fragmentation of waterways;
habitat loss due to dams; water
diversions; increased water
temperature; reduced oxygen
levels; reduced water quality | Distribution, species-specific requirements | Maintain or restore high water quality. | (Invertebrates Cont.) | Species | Ecoregion(s) | Special needs | Limiting Factors | Data gaps | Conservation actions | |--|--------------|---|--|--|--| | Columbia Gorge
Oregonian
(Cryptomastix
hendersoni) | СР | Riparian habitats: generally near
seeps and springs; may be in leaf
litter, under logs, in moist
hardwood vegetation or in basalt
talus | Restricted distribution (endemic);
habitat loss due to urban
development and road
construction; pesticide overspray;
grazing impacts to riparian
vegetation | Distribution and life history requirements | Maintain and restore riparian
vegetation in the Columbia
Gorge and along the lower
Deschutes River | | Crater Lake tightcoil
(<i>Pristiloma arcticum</i>
<i>crateris</i>) | EC | Continuously wet habitat among debris, moss or vegetation | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Crooked Creek
springsnail (<i>Pyrgulopsis</i>
intermedia) | NBR | Large, low elevation cold springs
and spring-influenced creeks;
generally with gravel-boulder
substrate | Narrow distribution (endemic). Sensitive to changes in water quality. Water diversions from springs. Impacts from unmanaged livestock grazing. | Undetermined. | Protect known sites of occurrence. Maintain appropriate water flow and quality. | | Dall's ramshorn
(Vorticifex effusus dalli) | EC | Spring-influenced areas of large
lakes; now limited to Upper
Klamath Lake | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Great Basin ramshorn
(Helisoma newberryi
newberryi) | EC | Spring-influenced areas in large lakes and rivers | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Harney Lake springsnail
(Pyrgulopsis hendersoni) | NBR | Small to large mildly thermal
springs and spring pools that
have moderate flow and are
generally shallow. | Narrow distribution (endemic).
Sensitive to changes in water
quality. Water diversions from
springs. Impacts from
unmanaged livestock grazing. | Taxonomic status. | Protect known sites of occurrence. Maintain appropriate water flow and quality. Note: U.S. Fish and Wildlife Service is reviewing species status. | | Highcap lanx (<i>Lanx alta</i>) | EC | Spring-influenced areas in larger rivers and tributaries | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific
habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Species | Ecoregion(s) | Special needs | Limiting Factors | Data gaps | Conservation actions | |---|--------------|---|--|---
--| | Klamath ramshorn
(Vorticifex klamathensis
klamathensis) | EC | Spring-influenced streams; now limited to Upper Klamath area | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Lined ramshorn
(Vorticifex effusus
diagonalis) | EC | Spring-fed lakes and large creeks | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Newcomb's littorine snail
(Newcomb's Periwinkle)
(<i>Algamorda</i>
newcombiana) | CR | Intertidal areas in glasswort beds;
needs cold, clear, well-
oxygenated water on a mixed
sand or sand/gravel bottom; at or
just above mean high tide line | Habitat loss | Effects from invasive European green crabs | Maintain intertidal habitats;
continue to eradicate and
monitor for invasive Spartina
species, which displace glasswort | | Purple-lipped juga
(Dechutes Juga) (<i>Juga</i>
hemphilli hemphilli) | BM
CP | Cold, highly oxygenated water;
found in gravel-boulder riffles | Fragmentation of waterways;
habitat loss due to dams; water
diversions; increased water
temperature; reduced oxygen
levels; reduced water quality | Distribution, species-specific requirements | Maintain or restore high water quality. | | Robust walker
(Pomatiopsis binneyi) | CR | Perennial seeps and rivulets | Undetermined | Species-specific habitat requirements. | Protect known sites of occurrence. and use these to guide management actions | | Rotund lanx (<i>Lanx</i> subrotunda) | KM | Large rivers (Umpqua) and major
tributaries, generally in swift
current on rocky substrate | Modifications to hydrology that disturb flow regimes. Water quality | Undetermined | Maintain or restore watershed function and flow dynamics | | Scale lanx (Lanx
klamathensis) | EC | Large spring-fed lakes and rivers | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Scalloped juga (Juga
acutifilosa) | EC | Large springs and rivers | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow
and quality. Prevent or mitigate
for water diversions, dredging, or
other activities that could
increase sediment or nutrient
levels. | | Shortface lanx (Fisherola nuttalli) | СР | Unpolluted swift-flowing, highly oxygenated cold water in small to large rivers; on stable bouldergravel substrates; currently occurs | Habitat loss due to dams on
Columbia river; sedimentation;
agricultural and industrial runoff
that affects water quality | Distribution and life history requirements | Maintain or restore high water quality | (Invertebrates Cont.) | Species | Ecoregion(s) | Special needs | Limiting Factors | Data gaps | Conservation actions | |--|--------------|---|--|---|---| | | | in Lower Deschutes River (possibly Columbia River) | | | | | Sinitsin ramshorn
(Vorticifex klamathensis
sinitsini) | EC | Large, cold springs | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow and quality. Prevent or mitigate for water diversions, dredging, or other activities that could increase sediment or nutrient levels. | | Siskiyou hesperian
(Vespericola sierranus) | EC
KM | Spring seeps; under leaf litter on ground | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow and quality. Prevent or mitigate for water diversions, dredging, or other activities that could increase sediment or nutrient levels. | | Turban pebblesnail
(Fluminicola
turbiniformis) | EC | Cold nutrient-poor springs | Restricted distribution. Sedimentation and nutrient input from dredging, land use practices, mining and road construction (may smother substrates or reduce egg survival). Habitat loss. Spring alteration and decreased flow. | Distribution; species-specific habitat requirements | Maintain appropriate water flow and quality. Prevent or mitigate for water diversions, dredging, or other activities that could increase sediment or nutrient levels. | | Willamette floater
(freshwater mussel)
(Anodonta
wahlametensis) | WV | Lakes; slow-moving rivers, streams, and sloughs. Requires specific native fish that act as obligate hosts for parts of the mussel life cycle. | Reduced water flow; passage barriers; sedimentation; contaminants; habitat loss due to dams; non-native species (e.g., introduced Asian clam competes with floaters; introduced fish can outcompete native fish species required by floaters to complete life cycle) | Current distribution | Retain natural flow regimes; reduce sedimentation and contamination. Monitor and conserve native fishes. | ## Fender's Blue (Butterfly) and Kincaid's Lupine The story of the Fender's blue (butterfly) and Kincaid's lupine demonstrates how species can be dependent on each other. Like falling dominoes, when once species declines, other closely-associated species may decline along with it. Fender's blue is a small butterfly with shimmering sapphire wings. It occurs only in Oregon and is dependent on the Kincaid's lupine as a host plant. In the spring, female blues lay eggs on the lupine. The caterpillars hatch, feed on the lupine, go dormant for the fall and winter, then feed again on the lupine in the spring before pupating into adults. Kincaid's lupine has small purple pea-like flowers and silvery leaves. It is limited to the Pacific Northwest and has become rare due to habitat loss and current threats from invasive plants. As the lupine became rare, so did the Fender's blue, and both species were listed under the federal Endangered Species Act in 2000. Since then, cooperative efforts by U. S. Fish and Wildlife Service wildlife refuges, Bureau of Land Management, the City of Eugene, The Nature Conservancy, and a few private landowners have improved and restored grassland habitat, and the future of both species looks more hopeful. Conservation Summaries for Strategy Species – Plants (60 Species): | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|--|--|--|---| | Applegate's milk-vetch
(Astragalus applegatei) | EC | Flat, open, seasonally moist
floodplain alkaline grasslands.
Historically, habitat
included
sparse, native bunch grasses and
patches of bare soil. | Narrow distribution (endemic to Klamath Basin in Oregon). Currently, 3 populations and low numbers make this species vulnerable to random events. Habitat loss due to agriculture and urban development. Alteration of hydrology. Invasive plants. Low reproduction. | Population dynamics and minimum population size for long-term viability. Genetic studies. Affects of burning and other management techniques. Soil ecology. Extent and impacts of herbivory. | Continue to implement actions identified in Recovery Plan, including managing and monitoring known sites. Evaluate establishing new populations in suitable habitat. | | Arrow-leaf thelypody
(Thelypodium
eucosmum) | ВМ | Occurs with western juniper at
streambanks, seasonally moist
areas, seeps, and under isolated
western juniper trees away from
obvious moisture | Endemic species (near tributaries
of John Day River). Palatable to
cattle and sensitive to grazing
pressure | Additional inventories to determine population size and distribution. Study soil moisture relationships. Germination and propagation requirements. | Minimize grazing at priority sites. Collect and store seeds. | | Big-flowered wooly
meadowfoam
(<i>Limnanthes floccosa</i>
ssp. <i>grandiflora</i>) | KM | Edges of vernal pools at elevations of about 1230 – 1300 ft, in Agate desert region. Soils are shallow, Agate-Winlow, and vegetation is sparse, with few tries. Overall topography of area is mound-swale, with underlying impervious layer that traps winter rains. | Destruction of vernal pool
habitat, industrial and residential
development, agricultural
conversion, grazing and
competition with invasive plants | Seed germination protocol,
pollination studies, cultivation
protocol,
transplanting/introduction
protocol | Continued population
monitoring. Maintain current
populations and restore vernal
pool habitat at priority sites,
including Denman Wildlife
Management Area | | Boggs Lake hedge-
hyssop (<i>Gratiola</i>
<i>heterosepala</i>) | NBR | Semi-aquatic habitats, in mud or
damp soil at the edge of lakes, at
around 5575 ft altitude,
surrounded by sagebrush flats | Potentially disturbed by grazing | Study impacts of cattle grazing.
Determine propagation and
reintroduction protocol. | Only known Oregon population on BLM habitat Monitor existing populations Survey for suitable habitat for the establishment of new populations | | Bradshaw's desert
parsley
(<i>Lomatium bradshawii</i>) | W | Wet prairies, near banks of
creeks or small rivers, with
shallow, poorly drained clay soils | Habitat loss, degradation due to
lack of fire and competition from
invasive plants, overspray of
herbicides | Reproductive biology studies, seed bank formation studies, may benefit from light grazing which reduces competition from other plants – determine grazing regimes that maintain populations | Continue implementing actions in Recovery Plan. Maintain or restore grass-dominated habitats; maintain or restore hydrology; control key invasive plants; use mowing or prescribed fire to control brush and trees; maintain populations in roadsides and ditches | | Cascade Head catchfly
(Silene douglasii var.
oraria) | CR | Grassy meadow and rocky
outcrops adjacent to Pacific
Ocean | Very restricted distribution, few populations, and small population size. Habitat loss and fragmentation due to development. Invasive plants. Recreational use of sites. Herbivory. | Methods to reduce leaf litter accumulations. Propagation and reintroduction methods. | Manage recreation at known sites to prevent trampling. Maintain open habitats by removing encroaching shrubs. | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|--|--|--|---| | Cook's desert parsley
(Lomatium cookii) | KM | Jackson Co: vernal pools in Agate
Desert which range from 3-100 ft
across and are no more than 12
in deep. Josephine Co:
seasonally wet grassy meadows
on alluvial floodplains in the
Illinois Valley, with underlying soil
forming clay pan. | Habitat loss and degradation, conversion to agriculture, livestock grazing, residential development, road and powerline right-of-way maintenance such as herbicide spraying, off-road vehicle use, invasive plants, mining, fire suppression resulting in shrub encroachment | Seed production, breeding
system studies, cultivation
protocol, transplanting/
introduction protocol | Maintain current populations and restore vernal pool habitat at priority sites, including Denman Wildlife Management Area. Manage road construction and maintenance projects to avoid impacts to hydrology in and around known populations. | | Coast Range fawn-lily
(Erythronium elegans) | CR | Open meadows, brushland, rocky cliffs, open to closed coniferous forests, edges of sphagnum bogs. | Restricted distribution (endemic
to Oregon's Coast Range); only 5
known populations. Plant
collection. Herbivory. Fungal
infection (Douglas fir blight).
Impacts to habitat from logging. | Distribution and microhabitat requirements. Historic distribution (e.g., have populations declined or always been rare?). Population genetics. | Continue efforts to protect known sites and monitor populations. Collect and store seeds. Consider re-introductions. | | Crinite mariposa-lily
(Calachortus coxii) | KM | In meadow, leaf litter and moss habitats between 1375 -3000 foot elevation. Serpentine soils in transition zones between coniferous forests and grass-shrub meadows. | Bulb collection and flower picking, grazing, seed predation, fire suppression | Propagation and transplantation
protocol, reproductive biology
studies to determine causes of
low fecundity, research
soil/microsite mechanism causing
endemism to serpentine soils | Survey for potential habitat for
the establishment of new
populations, long-term
monitoring of known
populations, manage grazing and
recreational activity in sensitive
areas | | Cronquist's stickseed
(Hackelia cronquistii) | NBR | Sandy sagebrush slopes,
sometimes on moist slopes of
ravines, elevations between
2060-2460 ft | Limited distribution; grazing,
herbicide and insecticide use;
agricultural development;
invasive plant and crop seeding
competition; unregulated off-
road vehicle and equestrian use. | Study of impacts of light grazing, which may open up sagebrush and create suitable habitat or may be damaging. Propagation and transplant protocols. Survey for additional populations. | Continue to implement Habitat Management Plan on public (BLM) land (manage recreational access, herbicide use, grazing, and insecticide use during flowering periods to maintain populations). | | Crosby's buckwheat
(Eriogonum crosbyae) | NBR | Rolling hills dominated by big sagebrush, on light colored tuffaceous, sedimentary sandstone, elevation 5450-5540 ft. | Cattle grazing, range
improvement projects, off-road
vehicle traffic, mining | Propagation and transplanting protocol, reproductive biology including pollinator studies, genetic analysis | Limit rangeland projects within its
habitat, prevent off-road vehicle
traffic, conduct long-term
monitoring to detect seed
production trends, collect and
store seeds | | Cusick's lupine (Lupinus cusickii) | ВМ | Loose, rocky soils, barren ash deposits | Narrow distribution (Baker Co.
and Idaho); vulnerable to
uncontrolled off-highway vehicle
use and livestock grazing | Factors affecting plant reproduction and population density | Survey likely habitat for
additional populations. Manage
grazing and off-highway vehicle
use at known sites. | | Dalles Mountain
buttercup (Ranunculus
reconditus) | EC | Steep, rocky terrain, ridgetops in grasslands or woodland openings. | Narrow distribution (limited to
Columbia River Gorge). Small
number of remaining populations
(only one known in Oregon). | Pollination biology, seed germination and ecology, and seedling establishment. Effects from invasive plants. | Continue to monitor existing population and conduct surveys to determine if other populations exist. | | Davis' peppergrass
(<i>Lepidium davisii</i>) | NBR | Hard, white clayey playas, poorly
drained and often inundated
with standing water. Elevation
from 3100-5575 ft. | Offroad vehicles and trampling
due use of habitat as watering
sites for feral and domestic
livestalk. | Reproductive biology, life history information, analysis of differences between isolated populations (observed morphological differences), Propagation and transplanting protocol | Fence populations on public land
to reduce impacts from off-road
vehicles and grazing. | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps
| Conservation actions | |--|--------------|--|---|---|---| | Dwarf meadowfoam
(Limnanthes floccosa
ssp. pumila) | KM | Ancient basalt laval flows on
Upper and Lower Table Rocks in
Jackson County, above 1950 ft.
Grows along edges of deep
vernal pools. | Limited habitat, trail construction and maintenance | Seed germination protocol,
pollination studies, cultivation
protocol, transplanting/
introduction protocol | Minimize impacts from trail construction and maintenance. Continue population monitoring. Note: plant occurs only on federal land | | Gentner's fritillaria
(Fritillaria gentneri) | KM | Variable: woodlands dominated
by Oregon white oak, moist
riparian areas, Douglas-fir forests,
serpentine sites. Most likely to
be found in ecotones between
forested sites and more open
habitat, in open canopied forest,
in permanent openings in the
forest, and in large riparian zones
with canopy gaps or deciduous
tree canopies. | Loss of habitat and habitat degradation due to invasive plant infestations, road construction, agricultural disturbances, urban development, grazing, off-road vehicle use, trail maintenance | Seed germination studies Complete chromosome counts to clarify mechanism causing observed sterility Complete pollen viability tests Cross pollination studies between F. recurva and F. affinis (putative parents of F. gentneri) Pollinator visitation studies Molecular studies of population structure | Minimize impacts from road maintenance and construction on existing roadside populations Continue monitoring existing populations | | Golden buckwheat
(Eriogonum chrysops) | NBR | Exposed, rocky ridges at mid elevations | Narrow distribution (endemic to a
small area in Malheur County);
small population size, quarry
mining. | Population status; factors limiting population distribution and size; population surveys | Monitor existing populations | | Golden paintbrush
(Castilleja levisecta) | W | Low elevations open prairies with
moist winter soil (but no standing
water); often on gravelly glacial
outwash or outcrops of clayey
glacio-lacustrine sediment | Habitat loss due to urbanization, commercial and agricultural development; encroachment of native species as result of fire suppression; non-native invasive weed competition; trampling by recreationists; herbivory (deer, rabbits) | Breeding system and pollination
studies, response to fire, long-
term demographic monitoring,
development of propagation and
reintroduction protocol | Survey potential habitat for populations, continue experimental reintroduction. Note: thought to be extirpated from Oregon. | | Greenman's desert
parsley (Lomatium
greenmanii) | ВМ | Subalpine grasslands on rocky sedmentary/ basalt soils | Naturally rare – localized endemic with four known occurrences on three mountain peaks in the Wallowa Mountains; one site is near a nature trail that is accessible by aerial tram so is vulnerable to unintentional trampling | Reproductive and pollination biology studies; determine seed germination, propagation and transplantation protocols; study impacts of grazing and other potential disturbances. | Construction of pathways has reduced impacts: continue to manage recreational use to minimize trampling. | | Grimy ivesia (Ivesia rhypara var. rhypara) | NBR | Ash deposits, on widely scattered outcrops of welded ash tuff, roots in shallow weathered surface soil and cracks in underlying bedrock | Mining (grows on potential gold-
bearing deposits), off-road
vehicles, grazing | Size of 4 Oregon populations,
effects of low precipitation on
reproduction and survival,
transplantation protocol | Survey for suitable habitat for establishment of new populations, limit insecticide spraying while plants are in bloom, monitor populations to assess population trends, fence populations on public land to prevent cattle trampling | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--------------|---|--|---|--| | Howell's mariposa-lily
(Calachortus howellii) | KM | Serpentine outcrops at lower to
middle elevations, often on brush
covered slopes or in scattered
woods | Mining, horticultural collecting, grazing | Develop propagation and
transplanting protocol, research
soil/microsite mechanism causing
endemism to serpentine soils | Manage grazing in areas known
to contain populations of this
species, minimize impacts from
mining | | Howell's microseris
(Microseris howellii) | KM | Slopes or flat ground with
varying exposures, in rocky
serpentine soils at about 1150 -
3500 ft. | Grazing, prospecting and nickel
strip mining, excavation at gravel
quarry | Reproductive biology, pollination studies, genetic analysis, propagation and transplanting protocol | Minimize impacts from mining | | Howell's thelypody
(Thelypodium howellii
ssp. spectabilis) | BM | low elevation (3,000 to 3,300 ft) river valleys and moist (often alkaline) plains; occurs at edge between black greasewood and riparian habitats; may be dependent on seasonal flooding | Narrow distribution (endemic species to Baker-Powder drainage). Competition from invasive plants; habitat loss and fragmentation due to habitat conversion; changes in hydrology; sensitive to grazing pressure; mowing during growing season | Well inventoried, but taxonomic relationships need to be clarified. Seed germination and propagation protocol. Seed generation methods. Life history, growth requirements, and general ecology. | Continue voluntary cooperative efforts with private landowners. Minimize grazing and mowing during growing season at priority sites. Control key invasive plants. Collect and store seeds. | | Howellia (Howellia
aquatilis) | W | Low elevation shaded riparian vernal pools | Habitat loss due to agricultural
and urban development, changes
in wetland hydrology, invasive
plants (reed canary grass, purple
loosestrife), aquatic vegetation
succession | Determine propagation and transplant protocol, long-term population demographic studies, seed viability and distribution mechanism studies, seed bank studies, methods for storing viable seeds | Maintain or restore seasonal wetland habitats, control invasive plants at priority sites, survey for additional populations. Recovery plan identifies additional conservation actions. | | Kincaid's lupine (<i>Lupinus</i> sulphureus ssp. kincaidii) | KM
WV | Seasonally wet native prairies | Habitat loss due to urbanization and agriculture; invasive plants; elimination of disturbance regimes (flooding, fire) which maintain prairies; inbreeding depression due to small populations; road construction and maintenance affects remnant habitats | Hybridization issues need clarification | Restore prairie habitat using site-
appropriate tools (e.g., burning,
mechanical
removal of encroaching
vegetation). Long-term
demographic monitoring. Survey
for new populations. Limit
impacts from road construction/
maintenance activities at known
sites. | | Large-flowered rushlily
(Hastingia bracteosa) | KM | Bogs, moist open meadows, seeps and wetlands often overlying serpentine or peridotite rock formations. Open areas generally below 780 ft, often with gentle slope. | Severely affected by cattle
grazing. Also impacts from
mining, water diversion from
bogs, off-road vehicle use, land
development | Germination studies, propagation and transplantation protocol | Maintain California pitcher-plant bogs, which provide habitat for many rare species. Minimize water withdrawals from bog sites. Carefully manage or eliminate grazing at known population sites, collect/store seeds (including seeds from both white and purple flowers)
| | Lawrence milk-vetch
(Astragalus collinus var.
laurentii) | СР | Deep loess soils in Palouse
grasslands | Habitat loss (agriculture conversion); narrow distribution (endemic to western Umatilla and Morrow counties); grazing; herbicide use; road construction; invasive plants (primarily | Reproductive biology studies,
pollinator studies, development
of seed germination, propagation
and transplant protocols | Work cooperatively with landowners to maintain priority sites; control invasive plants | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--------------|--|---|---|---| | | | | knapweeds) | | | | MacFarlane's four-
o'clock (<i>Mirabilis</i>
<i>macfarlanei</i>) | BM | Warm, dry, open canyon slopes.
Soils are sandy or rocky and are
often unstable. | Narrow distribution (Hell's Canyon and northwestern Idaho). Potential inbreeding depression. Primary limiting factor is invasive plants, but other impacts occur from off-highway vehicle use, construction and maintenance of roads and trails, mining, and herbicide drift. Historically, uncontrolled livestock grazing degraded habitats but is no longer a limiting factor for this species. | Development of seed germination, propagation and transplant protocols; pollination studies, investigate extent of seed bank. Determine if inbreeding depression is a limiting factor. | Actions implemented through the Recovery Plan (1985) contributed to improved species status and downlisting from Endangered to Threatened in 1996. Continue implementing actions specified in Recovery Plan and continued monitoring at permanent plots | | Malheur Valley
fiddleneck (Amsinckia
carinata) | NBR | Yellowish talus slopes and gravel accumulations at elevations of about 980 ft. | Mining, grazing and range improvements, agricultural development, hybridization and competition with <i>A. tessellata</i> | Analyze the genetic variability within and among populations, study the extent of hybridization | Only found on federal property. Continue to manage existing populations. | | Malheur wire-lettuce
(Stephanomeria
malheurensis) | NBR | Eastern Oregon sagebrush
steppe, tops of broad hills zabove
surrounding flats, volcanic tuff
layered with thin crusts of
limestone | Competition from invasive plants, including cheatgrass. Small population size puts species at risk of extirpation due to random events. Herbivory. Soil compaction by researchers. | Soil seed bank survivorship
studies to determine length of
time seeds remain viable (in soil
and in storage) | Only known site on BLM protected land. Survey for suitable habitat for reintroduction efforts. Establish additional populations. Continue to minimize mining activity near populations. Continue banking seeds for future needs. | | Mulford's milk-vetch
(Astragalus mulfordiae) | NBR | Shrub-steppe and desert shrub communities in semi-arid cold-desert region of southeastern Oregon. On moderately steep to steep southeast, south and southwest facing slopes consisting of old river deposits, sandy areas near rivers, sandy bluffs, and dune-like talus. Elevation 2100-3200 ft | Habitat degradation, urban development, livestock grazing and trampling, fires leading to invasion of cheatgrass, off-road vehicle use, invasive weeds, herbicide drift from invasive weed control, loss of pollinators due to insecticide spraying, road development and maintenance, population fragmentation and isolation leading to inbreeding depression, mining | Pollination mechanism, genetic studies of different populations (which respond differently to disturbance), grazing impact studies, propagation and reintroduction protocols | Monitoring of populations,
Collect and store seeds from
across range. Survey for suitable
protected habitat. Establish new
populations | | Nelson's checker-mallow
(<i>Sidalcea nelsoniana</i>) | CR
WV | Wet and dry prairies, wetlands,
edges of woodlands, riparian
areas and
remnant populations occur in
roadsides and ditches | Habitat loss due to conversion, habitat degradation due to lack of fire and competition from invasive plants, overspray of herbicides. Seed predation by weevils. | Additional research on ecology of seed-predating weevils. Seed germination studies. Genetic diversity | Maintain or restore grass-
dominated habitats; maintain or
restore hydrology; control key
invasive plants; use mowing or
prescribed fire to control brush
and trees; maintain populations
in roadsides and ditches | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--------------|---|--|---|--| | Northern wormwood
(Artemisia campestris
var. wormskjoldii) | CP
WC | Historically known from banks of
Columbia River; found with
shrub-steppe vegetation, on
basalt, compacted cobble and
sandy substrates | Habitat destruction due to highway construction, dam-related and other development, and floods. | Reproductive biology studies;
pollinator studies; demographic
studies; development of seed
germination, propagation and
transplantation protocols | Survey likely habitat for populations, reintroduce populations to suitable habitat | | Oregon semaphore
grass (Pleuropogon
oregonus) | BM
EC | Moist meadows and marshland,
often comprised of gravelly silt
loam or clay soil inundated by
slow-moving water; around
2450-3950 ft elevation | Naturally rare with disjunct populations; palatable to cows and vulnerable to grazing due to shallow roots; loss of habitat due to drainage for agricultural use; naturally low reproductive capability. | May benefit from light grazing regimes that reduce thatch: develop grazing regimes that are compatible with maintaining populations. Develop transplanting protocol. | Manage grazing at known populations. Collect and store seed. Currently being introduced into suitable habitat on public land. | | Owyhee clover (<i>Trifolium</i> owyheense) | NBR | Endemic to Owyhee Uplands,
barren slopes or mounds
composed of talus and loose soils
derived from tuffaceaus/ashy
parent material | Invasive weeds, ground disturbance by livestock, potential habitat loss from development of mining claims, spraying and seeding associated with rangeland improvements, road construction, off-road vehicle traffic | Germination and cultivation protocols (investigation of required soil symbionts), seed collection focusing on capturing potential genetic diversity, transplantation protocol | Mitigate range projects which are potentially damaging to the species, minimize ash and gravel excavation in sensitive areas, manage recreational activity in sensitive areas | | Packard's mentzelia
(Mentzelia packardiae) | NBR | Volcanic ash high in potassium,
grows on loose slopes at altitudes
of about 2950-5250 ft. | Mining, recreational activity disturbance, off-road vehicle use, road construction utilizing ash substrate. | Common garden studies/genetic investigation of between population variation, size/longevity of seed bank, collect/store seeds at Berry Botanic Garden, propagation and transplantation protocol | Minimize road construction into side canyons and mining activity near populations. Minimize pesticide spraying along local roadways before and during blooming period (threat to pollinators). Monitor populations annually. | | Peacock larkspur
(<i>Delphinium</i>
<i>pavonaceum</i>) | W | Slightly higher and drier
microhabitats within wet prairies,
shady edges of Oregon ash and
Oregon oak woodlands | Narrow distribution (endemic to
Willamette Valley), habitat loss,
degradation due to lack of fire
and competition from invasive
plants, overspray of herbicides | Reproductive biology studies, pollinator studies, hybridization studies, germination requirements, propagation and
transplanting protocols | Maintain or restore grass-
dominated habitats; maintain or
restore hydrology; control key
invasive plants; use mowing or
prescribed fire to control brush
and trees; maintain populations
in roadsides and ditches; collect
and store seeds | | Peck's milk-vetch
(Astragalus peckii) | BM
EC | Prefers open habitat, although
associated with pine, juniper or
bitterbrush communities; sandy
soils; 3,000-5000 ft elevation | Limited to Deschutes and
Klamath County; small number
of populations; illegal off-road
vehicle use | Pollinator biology studies, plant response to disturbances. | Determine and protect known sites of occurrence. | | Pink sand-verbena
(Abronia umbellata ssp.
breviflora) | CR | Open, sandy habitats (dunes and beaches); ephemeral sites created by storms. | Narrow habitat requirements. Habitat loss due to European beachgrass invasion. Impacts to habitat and populations from off- highway vehicles. Winter storms destroy populations, but also create new habitat and disperse seeds. | Methods to recruit new plants to populations in the wild. | Continue efforts to control
European beachgrass and
manage off-highway vehicle use
at known sites. Continue to
monitor populations. | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|--------------|--|---|--|--| | Pumice grape-fern
(Botrychium pumicola) | EC | Open, flat, high elevation ridgetops to gently rolling slopes with rocky or coarse pumice soils. Clumpy distribution. Associated with alpine scree or lodgepole pine or antelope bitterbrush frost-pockets. Emerges in years when conditions are sufficiently moist. | Small size makes vulnerable to
trampling. Affected by fire
suppression (closing canopies);
timber harvest that compacts soil.
Facilities, roads, or trails can
eliminate habitat | Identify protected populations (work in progress by interdisciplinary scientific team). Does Newberry pumice plume represent a special habitat? Note uncertainty of annual surveys because of unpredictable emergence patterns. | Avoid disturbing ground at known sites unless activities specifically designed to maintain or enhance populations | | Red Mountain rockcress
(Arabis macdonaldiana) | KM | Serpentine, fairly barren habitat, usually on steep unstable slopes or dry open woods below 4900 ft. Sites usually recently disturbed. | Slope erosion, road maintenance, logging, succession, nickel mining, over-collection, off-road vehicle use | Determine propagation and transplanting protocols, determine environmental variables associated with plant presence | Survey for new populations,
collect and bank seeds from
Oregon populations, minimize
disturbance at priority sites
during growing season | | Red-fruited desert
parsley
(Lomatium
erythrocarpum) | BM | Endemic to high elevation, open habitats in the Elkhorn Mountains. Found on steep south- and east-facing slopes in gravelly soils. Occurs primarily on one soil type (Elkhorn argillite) but occasionally on limestone soils | Naturally rare with extremely limited geographic distribution. | Highly variable population trends: need to determine population demographics, factors influencing populations, and if observed variation in population density is an artifact of census methodology. Determine seed viability, longevity, and germination rates. Determine if a recreational trail and/or grazing by wildlife affects populations. | Continue monitoring populations to determine population trends and their causes; conduct surveys to determine if additional populations exist. | ## Iron Mountain-Cone Peak Wildflowers Oregon's Cascade Mountains are famous for their spectacular wildflower displays. Each summer, thousands of people visit the Cascades to view, photograph and enjoy wildflowers. The Iron Mountain-Cone Peak area, east of Sweet Home and near the Santiam Highway, is the crown jewel of Oregon's wildflower areas. Several trails maintained by the U.S. Forest Service allow visitors to explore many of Cone Peak's 20 meadows and admire the sweeping 360° view from the fire lookout on Iron Mountain. The wildflower diversity is remarkably high due to a diversity of habitats, including grassy meadows, rock faces, outcroppings, scree, snowfields, forests, and streamsides. Beginning with trilliums and bleeding hearts in late June and ending with goldenrod and asters in August, the kaleidoscope of color changes throughout the summer. Butterfly watching, a relatively new and quickly growing hobby, is also popular here because the wildflowers are host to a wide variety of butterflies and other insects. Along with birding trails, wildflower viewing and butterfly watching offer opportunities for promoting tourism in rural communities. Photos © Bruce Newhouse | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|--|--|---|---| | Rough allocarya
(Rough popcorn flower
for hairy popcorn flower)
(Plagiobothrys hirtus) | KM | Unshaded seasonally wet pools (vernal pools) | Habitat loss due to conversion of wetlands to agricultural fields and urban development, fire suppression, invasive plants, livestock grazing | Extent of distribution, potential for hybridization with other species in the same genus | Avoid herbicide spraying on roadside populations work cooperatively with private landowners to maintain populations on private land acquire land with quality habitat for population creation projects continue monitoring existing populations carefully manage grazing and fence priority populations, if necessary | | Saltmarsh bird's-beak
(Cordylanthus maritimus
ssp. palustris) | CR | Salt marsh, particularly at edges
of salt pan with occasional tidal
inundation | Impacts to habitat and populations from off-highway vehicles. Habitat loss due to draining and filling, land use conversion. | Study affects of pollution. Methods for germination, propagation, and reintroduction. Monitor to determine population trends. | Manage off-highway vehicle use at known populations. | | Sexton Mountain
mariposa-lily
(Calochortus indecorus) | KM | Serpentine soils | Over-collection, grazing, agricultural development | Surveys to document whether or
not extirpated, taxonomic review
of species | If populations are located,
determine conservation actions
needed to maintain them | | Shiny-fruited allocarya
(Shiny-fruited popcorn
flower)
(<i>Plagiobothrys</i>
<i>lamprocarpus</i>) | KM | "moist places along roads",
specific habitat needs unknown | Agricultural and urban
development | Surveys to document whether or
not extirpated, taxonomic review
of species | If populations are located,
determine conservation actions
needed to maintain them | | Silvery phacelia (<i>Phacelia</i> argentea) | CR | Unstabilized or semi-stabilized sand dunes, bluffs, and bases of coastal headlands; above the high tide level but below 65 ft in elevation | Habitat loss due to European
beachgrass invasion and urban
development. Impacts from off-
highway vehicle use. | Life history and biology.
Propagation and reintroduction
protocols | Continue efforts to control
European beachgrass and
manage off-highway vehicle use
at known sites. Continue to
monitor populations. | | Smooth mentzelia
(Mentzelia mollis) | NBR | Dry, open, green or grey montmorillonite-derived soil from the Succor Creek formation, with abnormally high potassium content (popcorn clay). Elevation about 4590 ft. | Roadwork, off-road vehicles, grazing, range improvement practices, trampling by hikers, climatic fluctuations, absence of pollinators, mining, range fires | Reproductive biology,
propagation and transplanting
protocol, analyze genetic
variation within and among
populations, morphological
comparison of northern and
southern populations | Ban significant ground disturbing activities,
fence populations on public land to reduce impacts grazing, photo-monitoring of trampling caused by researchers, experimentation with revegetation in disturbed sites. | | Snake River goldenweed (<i>Pyrrocoma radiata</i>) | BM
NBR | Arid shrub-steppe rangeland,
loam soils on steep rocky hillsides | Livestock grazing | Propagation and transplanting protocol | Minimize grazing at priority sites | | South Fork John Day
milk-vetch (<i>Astragalus</i>
diaphanus var. diurnus) | BM | Occurs on barren ash in stream bottom habitats in the South Fork of the John Day River. | Habitat loss; road construction. | None – the restricted distribution is well-understood | Voluntary conservation projects with private landowners, since most sites are privately-owned and habitats have low economic value | | Spalding's campion
(Silene spaldingii) | ВМ | Bunchgrass-dominated grasslands with deep soil | Invasive plants, especially knapweeds | Distribution on private land not well documented | Control invasive plants; limit grazing in late summer when in bloom | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |--|----------------|--|---|--|--| | Sterile milk-vetch
(Astragalus cusickii var.
sterilis) | NBR | Endemic to Owyhee Uplands,
along Owyhee River, bare
gravelly and clay soils derived
from weathered volcanic ash
substrates | Grazing by domestic livestock,
mining, habitat invasion by
weeds | Seed collection focusing on
capturing potential genetic
diversity, propagation and
transplanting protocol | Fence populations on public land
to reduce impacts from off-road
vehicles and grazing. Long-term
monitoring. Limit range
improvement projects in sensitive
areas. | | Tygh Valley milk-vetch
(Astragalus tyghensis) | СР | Dry, rocky soils with thin, sandy
surface soil; occurs in bunchgrass
grasslands, mounded prairies or
open juniper habitats | Habitat loss; narrow distribution
(endemic to Wasco County);
competition from invasive plants;
roadside vegetation control
(spraying) impacts a few roadside
populations | Develop propagation and transplant protocols | Use mowing rather than
herbicide spraying to control
vegetation at known populations;
control invasive plants; manage
grazing at priority sites | | Umpqua mariposa-lily
(Calachortus
umpquaensis) | KM
WC | Grassland-forest ecotones on
serpentine soils, can be found in
a broad range of habitat from
closed canopy coniferous forests
to open grass-forb meadows | Grazing, logging, road construction, herbicide drift from adjoining private land applications, bulb digging by collectors, fire suppression, nickel mining, competition from invasive plants | Study factors limiting distribution
(reproduction, fecundity, etc.),
propagation and transplanting
protocol | Continue to implement interagency Conservation Agreement. Manage grazing and logging in sensitive areas, establish long-term monitoring, collect/store seed from all populations, survey for new populations | | Wayside aster (Aster vialis) | KM
WC
WV | Variable habitat: relatively open areas in the understory of mixed coniferous/ hardwood forests, along roadsides, and on open slopes and prairie balds | Habitat loss due to residential development and timber harvesting activities. Fire suppression leading to understory brush encroachment. Competition from invasive plants. Road maintenance; habitat fragmentation; and unregulated off-road vehicle use | Biology of species (seed production, breeding system/pollination, hybridization issues), population demographics and trends, determine ecological and habitat requirements, genetic analysis | Limit road maintenance during
growing season at priority sites.
Conduct surveys for new
populations. Maintain and
restore habitat at priority sites. | | Western Lily
(Lilium occidentale) | CR | Bogs composed of damp, slightly
acidic and organic soils; prefers
small shrubs with nearby sunlight
and may use shrubs for
mechanical support | Habitat loss due to bog draining and filling; land conversion for agriculture, urban development, and road construction. Soil compaction. Plant collecting and flower picking. Grazing. Habitat degradation due to fire suppression (encroaching shrubs and trees block sunlight and can change hydrology.) | May benefit from light grazing regimes that reduces competition from other plants: develop grazing regimes that are compatible with maintaining populations. Effects from foraging by wildlife (e.g., small mammals, deer, elk) Reproductive biology. Population genetics. | Continue current efforts, such as grazing management, propagation, and experimental vegetation management habitat (e.g., prescribed fire, mowing). Maintain and restore bog hydrology. Avoid herbicide application during the growing season for roadside populations and use "No Spray" signs at known populations for educational purposes | | White rock larkspur
(<i>Delphinium</i>
<i>leucophaeum</i>) | WC
WV | Well-drained areas within open
lowland prairies, dry roadside
ditches, along river banks and
bluffs, open areas atop basaltic
shelves; loose, shallow soils with
high content of organic matter | Habitat loss due to urban and agricultural development; habitat degradation due to loss of natural fire regimes and invasive encroachment in understory; herbicide use and other roadside maintenance; small population numbers and sizes | Pollinator studies, hybridization
studies, development of
transplanting protocol | Restore habitat using site-
appropriate methods (control
encroaching trees and shrubs,
control key invasive plants). | | Species | Ecoregion(s) | Special needs | Limiting factors | Data gaps | Conservation actions | |---|--------------|---|---|---|--| | White-topped aster
(Aster curtus) | WV | Open grassland habitats
(seasonally wet prairies; oak
savanna) | Habitat loss, degradation due to
lack of fire and competition from
invasive plants, overspray of
herbicides | Pollinator studies, seed sowing protocol | Maintain or restore grass-
dominated habitats; control key
invasive plants; use mowing or
prescribed fire to control brush
and trees; maintain populations
in roadsides and ditches; collect
and store seeds. | | Willamette daisy
(Erigeron decumbens) | W | Heavy soils in seasonally wet
native or dry upland prairie
grasslands | Narrow distribution (endemic to Willamette Valley), habitat loss, degradation due to lack of fire and competition from invasive plants, overspray of herbicides | Reproductive biology, long-term demographic monitoring to determine population dynamics, determine appropriate frequency for fire regime to maintain habitat, perform genetic analysis to determine extent of cloning | Maintain or restore grass-
dominated habitats; maintain or
restore hydrology; control key
invasive plants; use mowing or
prescribed fire to control brush
and trees; maintain populations
in roadsides and ditches; collect
and store seeds | | Wolf's evening-primrose
(Oenothera wolfii) | CR | Found on patches of Cenozoicera marine deposits that are well-drained but have adequate moisture. Habitats include grasslands, coastal strand, roadsides, and coastal bluffs. | Disjunct distribution because of highly specific habitat requirements. Hybridization with garden evening-primrose (Oenothera glazioviana), a closely-related non-native ornamental plant. Habitat loss due to urban development and road construction. Herbicide use. | Feasibility of starting new populations from cultivated plants; determine extent of hybridization | Avoid herbicide application and roadside/park maintenance activities during the growing season. Public outreach
about the problems caused by garden evening-primrose in areas where hybridization is a problem. | ## **Carnivorous Plants** In the plot of the musical comedy "Little Shop of Horrors," a human-eating plant bit the hand that fed it. While this film is nothing more than science fiction, it is loosely based on a group of plants that have an appetite for invertebrates and other minute animals. Found worldwide, carnivorous plants mostly eat insects, although tropical ones might eat an occasional frog. Carnivorous plants have two broad approaches for trapping insects. "Passive" methods include pitfall traps and glandular hairs that act as sticky flypaper. "Active" methods involve trap-door movement to catch insects. The most famous "active" carnivorous plant is the venus flytrap, which grows in the southeastern United States. Oregon has several intriguing carnivorous plants. California pitcher-plants, butterwort, and sundews are found in the Klamath Mountains ecoregion. California pitcher-plants, also called cobra lilies, grow along the southern Oregon coast and more commonly in bogs throughout the Siskiyou and Klamath Mountains. The pitcher-plant is showy, with purplish-green flowers and pitcher-like modified leaves that are up to 20 inches tall. Flies, bees and other insects are drawn to nectar glands near the pitcher's entrance. Clear windows in the pitcher's hood are thought to confuse insects looking for a way out. Insects land inside the pitcher, and downward-pointing hairs and slippery walls prevent them from escaping. Insects eventually drown in a liquid pool in the pitcher's base. Bacteria living in the pool digest the insects, freeing up nutrients for the plant to absorb. Califor- nia pitcher-plants can be seen at Darlingtonia State Natural Site. Located a few miles north of Florence, Darlingtonia State Natural Site is Oregon's only state park dedicated to the conservation of a single plant species. A short walking trail offers photo opportunities and interpretive signs tell the story of these interesting plants. Carnivorous plants trap insects primarily for a source of nitrogen. Like all plants, carnivorous plants need nitrogen as a basic building block for proteins. Many carnivorous plants grow in nutrient-rich bogs where nitrogen availability is limited by high acidity. Because bogs are uncommon and are home to rare and unusual plants, they are of special conservation interest.